cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300230 Restricted growth sequence transform of A286570, combining A009194(n) and A046523(n), i.e., gcd(n,sigma(n)) and the prime signature of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 6, 8, 9, 2, 10, 2, 11, 12, 6, 2, 13, 3, 6, 5, 14, 2, 15, 2, 16, 8, 6, 12, 17, 2, 6, 12, 18, 2, 15, 2, 7, 10, 6, 2, 19, 3, 20, 8, 11, 2, 21, 12, 22, 12, 6, 2, 23, 2, 6, 20, 24, 12, 15, 2, 11, 8, 25, 2, 26, 2, 6, 20, 7, 12, 15, 2, 27, 9, 6, 2, 28, 12, 6, 8, 29, 2, 30, 31, 7, 12, 6, 32, 33, 2, 20, 10, 17, 2, 15, 2, 34, 35
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A009194(n) = gcd(n, sigma(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from A046523
    A286570(n) = (1/2)*(2 + ((A046523(n)+A009194(n))^2) - A046523(n) - 3*A009194(n));
    write_to_bfile(1,rgs_transform(vector(65537,n,A286570(n))),"b300230.txt");

A173438 Number of divisors d of number n such that d does not divide sigma(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 4, 1, 4, 3, 2, 1, 2, 2, 2, 3, 0, 1, 4, 1, 5, 2, 2, 3, 8, 1, 2, 3, 4, 1, 4, 1, 3, 4, 2, 1, 7, 2, 5, 2, 4, 1, 4, 3, 4, 3, 2, 1, 6, 1, 2, 5, 6, 3, 4, 1, 4, 2, 6, 1, 10, 1, 2, 5, 3, 3, 4, 1, 8, 4, 2, 1, 6, 3, 2, 2, 5, 1, 6, 2, 3, 3, 2, 2, 6, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Feb 18 2010

Keywords

Comments

a(n) = 0 for multiply-perfect numbers (A007691).

Examples

			For n = 12, a(12) = 3; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; d does not divide sigma(n) for 3 divisors d: 3, 6 and 12.
		

Crossrefs

Programs

  • Maple
    A173438 := proc(n)
        local sd,a;
        sd := numtheory[sigma](n) ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(sd,d) <> 0 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    Table[DivisorSum[n, 1 &, ! Divisible[DivisorSigma[1, n], #] &], {n, 98}] (* Michael De Vlieger, Oct 08 2017 *)
  • PARI
    A173438(n) = (numdiv(n) - numdiv(gcd(sigma(n), n))); \\ (See PARI-code in A073802) - Antti Karttunen, Oct 08 2017

Formula

a(n) = A000005(n) - A073802(n).
a(n) = tau(n) - tau(gcd(n,sigma(n))). - Antti Karttunen, Oct 08 2017

A286571 Compound filter (prime signature of n & n/gcd(n, sigma(n))): a(n) = P(A046523(n), A017666(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 25, 17, 21, 30, 113, 70, 51, 68, 103, 93, 72, 51, 481, 155, 148, 192, 222, 331, 126, 278, 324, 382, 159, 569, 78, 437, 591, 498, 1985, 126, 237, 786, 2521, 705, 282, 952, 375, 863, 660, 948, 243, 337, 384, 1130, 1759, 1330, 1842, 237, 678, 1433, 520, 1776, 459, 1897, 567, 1772, 2076, 1893, 636, 2713, 8065, 2421, 810, 2280, 1002, 384, 2046
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A017666(n) = (n/gcd(n, sigma(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286571(n) = (1/2)*(2 + ((A046523(n)+A017666(n))^2) - A046523(n) - 3*A017666(n));
    
  • Python
    from sympy import factorint, gcd, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), n/gcd(n, divisor_sigma(n))) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286571 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A017666 n)) 2) (- (A046523 n)) (- (* 3 (A017666 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A017666(n))^2) - A046523(n) - 3*A017666(n)).
Showing 1-3 of 3 results.