cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A073802 Number of common divisors of n and sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 3, 1, 1, 2, 2, 1, 4, 1, 4, 1, 2, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 2, 3, 1, 6, 2, 3, 1, 2, 2, 6, 1, 1, 2, 1, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Comments

From Jaroslav Krizek, Feb 18 2010: (Start)
Number of divisors d of number n such that d divides sigma(n).
a(n) = A000005(n) - A173438(n).
a(n) = A000005(n) for multiply-perfect numbers (A007691). (End)

Examples

			For n = 12: a(12) = 3; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; d divides sigma(n) for 3 divisors d: 1, 2, 4.
n=96: d(96) = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96}, d(sigma(96)) = {1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252}, CD(n, sigma(n)) = {1, 2, 3, 4, 6, 12} so a(96) = 6.
		

Crossrefs

Programs

  • Magma
    [NumberOfDivisors(GCD(SumOfDivisors(n),n)): n in [1..100]]; // Vincenzo Librandi, Oct 09 2017
  • Mathematica
    g1[x_] := Divisors[x]; g2[x_] := Divisors[DivisorSigma[1, x]]; ncd[x_] := Length[Intersection[g1[x], g2[x]]]; Table[ncd[w], {w, 1, 128}]
    Table[Length[Intersection[Divisors[n], Divisors[DivisorSigma[1, n]]]], {n, 100}] (* Vincenzo Librandi, Oct 09 2017 *)
    a[n_] := DivisorSigma[0, GCD[n, DivisorSigma[1, n]]]; Array[a, 100] (* Amiram Eldar, Nov 21 2024 *)
  • PARI
    a(n)=numdiv(gcd(sigma(n),n)) \\ Charles R Greathouse IV, Mar 09 2014
    

Formula

See program.
a(n) = A000005(A009194(n)) = tau(gcd(n,sigma(n))). [Reinhard Zumkeller, Mar 12 2010]

A336387 Number of prime divisors of n that do not divide sigma(n); a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2020

Keywords

Crossrefs

Cf. A175200 (positions of zeros).
Cf. also A173438, A336352, A336388.

Programs

  • Mathematica
    Table[Length[Select[FactorInteger[n][[All,1]],Mod[DivisorSigma[ 1,n],#]!= 0&]],{n,110}] (* Harvey P. Dale, Jan 15 2022 *)
  • PARI
    A336387(n) = if(1==n,0,my(s=sigma(n)); #select(p -> (s%p), factor(n)[, 1]));

Formula

a(n) = Sum_{p over distinct primes dividing n} [sigma(n) != 0 mod p].

A336388 Number of prime divisors of sigma(n) that divide n; a(1) = 0.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2020

Keywords

Crossrefs

Cf. also A173438, A336352, A336387.

Programs

  • PARI
    A336388(n) = if(1==n,0,#select(p -> !(n%p), factor(sigma(n))[, 1]));

Formula

a(n) = Sum_{p over distinct primes dividing sigma(n)} [p|n], where [ ] is the Iverson bracket, giving in this case 1 only if p divides n, and 0 otherwise.
Showing 1-4 of 4 results.