cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A284229 a(n) is the least k such that A073802(k) = n.

Original entry on oeis.org

1, 10, 12, 6, 336, 24, 5952, 168, 792, 496, 666624, 270, 10924032, 6720, 7344, 120, 3757637632, 4284, 45091651584, 2160, 79488, 1820672, 11544784011264, 672, 298080, 29331456, 106200, 13440, 53620880789471232, 10080, 1501384662105194496, 6552, 7022592, 7515275264
Offset: 1

Views

Author

Paolo P. Lava, Mar 23 2017

Keywords

Comments

Composite numbers that have just 1 as divisor that satisfies the condition for which sigma(k) / d_i is an integer are the Duffinian numbers (A003624).
Alternative definition: Least k such that tau(gcd(k,sigma(k))) = n. - Giovanni Resta, Mar 23 2017

Examples

			The divisors of 12 are 1, 2, 3, 4, 6, 12 and sigma(12) = 28. Then:
1) 28 / 1 = 28;
2) 28 / 2 = 14;
3) 28 / 4 = 7;
and 12 is the least number to have this property. Therefore a(3) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local k,n; for k from 1 to q do
    for n from 1 to q do if tau(gcd(n,sigma(n)))=k then
    print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    TakeWhile[#, # > 0 &] &@ Table[If[KeyExistsQ[#, n], First@ Lookup[#, n], -1], {n, Max@ Keys@ #}] &@ KeySort@ PositionIndex@ Table[DivisorSum[k, 1 &, IntegerQ[DivisorSigma[1, k]/#] &], {k, 10^6}] (* per Name, Version 10, or *)
    TakeWhile[#, # > 0 &] &@ Table[If[KeyExistsQ[#, n], First@ Lookup[#, n], -1], {n, Max@ Keys@ #}] &@ KeySort@ PositionIndex@ Table[DivisorSigma[0, GCD[k, DivisorSigma[1, k]]], {k, 10^7}] (* faster, Version 10, Michael De Vlieger, Mar 24 2017 *)
  • PARI
    nb(n) = my(s = sigma(n)); sumdiv(n, d, (s % d) == 0);
    a(n) = k=1; while(nb(k) != n, k++); k; \\ Michel Marcus, Mar 24 2017

Extensions

a(13), a(17), a(19) and from a(22) to a(34) from Giovanni Resta, Mar 23 2017
Name proposed by Michel Marcus, Mar 24 2017

A009194 a(n) = gcd(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2
Offset: 1

Views

Author

Keywords

Comments

LCM of common divisors of n and sigma(n). It equals n if n is multiply perfect (A007691). - Labos Elemer, Aug 14 2002

Crossrefs

Programs

Formula

A000005(a(n)) = A073802(n). - Reinhard Zumkeller, Mar 12 2010
A006530(a(n)) = A082062(n). - Reinhard Zumkeller, Jul 10 2011
a(A014567(n)) = 1; A069059(a(n)) > 1. - Reinhard Zumkeller, Mar 23 2013
a(n) = n/A017666(n). - Antti Karttunen, May 22 2017

A037197 Numbers k such that tau(sigma(k)) = tau(k) where tau(k) is the number of divisors of k and sigma(k) their sum.

Original entry on oeis.org

1, 2, 8, 12, 32, 52, 75, 84, 90, 98, 128, 150, 156, 338, 360, 392, 525, 528, 560, 600, 722, 867, 912, 972, 1050, 1352, 1452, 1456, 1525, 1734, 1922, 2064, 2160, 2340, 2400, 2888, 2890, 3050, 3120, 3216, 3698, 3744, 3872, 4080, 4144, 4200, 4500, 4575
Offset: 1

Views

Author

Keywords

Examples

			k = 75: divisors(75) = {1, 3, 5, 15, 25, 75}, divisors(sigma(75)) = divisors(124) = {1, 2, 4, 31, 62, 124}, both 75 and sigma(75) have 6 divisors, so 75 is a term.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}]
    Select[Range[4600],DivisorSigma[0,#]==DivisorSigma[0,DivisorSigma[1,#]]&] (* Harvey P. Dale, Feb 08 2025 *)
  • PARI
    is(n)=numdiv(sigma(n))==numdiv(n) \\ Charles R Greathouse IV, Feb 13 2013

Formula

Solutions to A000005(x) = A062068(x) = A000005(A000203(x)).
Conjecture: for n > 10^6, a(n) < n^2. - Benoit Cloitre, Aug 24 2002

Extensions

Offset corrected by Reinhard Zumkeller, Jun 18 2009
Name edited by Michel Marcus, Nov 12 2023

A073803 Numbers k such that the number of divisors of k is smaller than that of sigma(k).

Original entry on oeis.org

3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			k = 96: divisors(96) = {1,2,3,4,6,8,12,16,24,32,48,96}, 12 divisors; divisors(sigma(96)) = {1,2,3,4,6,7,9,12,14,18,21,28,36,42,63,84,126,252}, 18 divisors; 12 < 18, so 96 is a term.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) uses numtheory; tau(n) < tau(sigma(n)) end proc:
    select(filter, [$1..100]); # Robert Israel, Aug 03 2020
  • Mathematica
    Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}]
    Select[Range[100],DivisorSigma[0,#]Harvey P. Dale, Sep 22 2019 *)
  • PARI
    isok(k) = {my(f = factor(k)); numdiv(f) < numdiv(sigma(f));} \\ Amiram Eldar, Mar 07 2025

Formula

Solutions to A000005(x) < A062068(x) = A000005(A000203(x)).

A073804 Numbers k such that the number of divisors of k is greater than that of sigma(k).

Original entry on oeis.org

4, 9, 16, 18, 25, 36, 48, 50, 64, 72, 80, 81, 100, 112, 144, 162, 180, 192, 196, 200, 208, 225, 240, 252, 256, 288, 289, 300, 320, 324, 336, 400, 432, 441, 448, 450, 468, 484, 512, 576, 578, 592, 624, 625, 648, 676, 700, 704, 720, 729, 768, 784, 800, 810, 832
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			k = 25: divisors(25) = {1,5,25}, 3 divisors; divisors(sigma(25)) = {1,31}, 2 divisors; 2 < 3, so 25 is a term.
k = 48: divisors(48) = {1,2,3,4,6,8,12,16,24,48}, 10 divisors; divisors(sigma(48)) = {1,2,4,31,62,124}, 6 divisors, 6 < 10 so 48 is a term.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}]
    Select[Range[900],DivisorSigma[0,#]>DivisorSigma[0,DivisorSigma[1,#]]&] (* Harvey P. Dale, Jan 18 2017 *)
  • PARI
    isok(k) = {my(f = factor(k)); numdiv(f) > numdiv(sigma(f));} \\ Amiram Eldar, Mar 07 2025

Formula

Solutions to A000005(x) > A062068(x) = A000005(A000203(x)).

A073808 Number of common divisors of sigma_1(n) and sigma_2(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 8, 3, 2, 2, 4, 2, 2, 6, 4, 2, 3, 2, 4, 3, 2, 3, 4, 2, 4, 3, 4, 2, 3, 2, 8, 4, 2, 2, 4, 4, 4, 3, 4, 2, 6, 3, 4, 6, 4, 2, 12, 2, 2, 4, 2, 3, 3, 2, 8, 3, 3, 2, 4, 2, 2, 4, 4, 3, 3, 2, 4, 3, 2, 2, 6, 3, 2, 6, 4, 2, 4, 3, 8, 3, 2, 3, 8, 2, 4, 4, 4, 2, 3, 2, 4
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Comments

a(n) = Card[Intersection[D[A000203(n)], D[A001157(n)]]]. - This is the formula given by the original author. D[x] here means the set of divisors of x. - Antti Karttunen, Nov 23 2017

Examples

			n=10: sigma[1,10]=18, sigma[1,10]=130 Intersection[{1,2,3,6,9,18},{1,2,5,10,13,26,65,130}]={1,2}, so a(10)=2.
		

Crossrefs

Programs

  • Mathematica
    g1[x_] := Divisors[DivisorSigma[1, x]] g2[x_] := Divisors[DivisorSigma[2, x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}]
    (* Second program: *)
    Table[Length@ Apply[Intersection, Divisors@ Array[DivisorSigma[#, n] &, 2]], {n, 105}] (* Michael De Vlieger, Nov 23 2017 *)
  • PARI
    A073808(n) = numdiv(gcd(sigma(n),sigma(n,2))); \\ Antti Karttunen, Nov 23 2017

Formula

a(n) = A000005(gcd(A000203(n), A001157(n))). - Antti Karttunen, Nov 23 2017

A073809 Number of common divisors of sigma_1(n) and sigma_3(n).

Original entry on oeis.org

1, 2, 3, 1, 4, 6, 4, 4, 1, 6, 6, 6, 4, 8, 8, 2, 6, 2, 6, 8, 6, 9, 8, 12, 1, 8, 8, 4, 8, 12, 6, 3, 10, 8, 10, 1, 4, 12, 8, 12, 8, 12, 6, 6, 4, 12, 10, 6, 2, 2, 12, 4, 8, 16, 12, 16, 10, 12, 12, 16, 4, 12, 4, 2, 12, 15, 6, 12, 12, 15, 12, 8, 4, 8, 3, 12, 12, 16, 10, 8, 3, 12, 12, 12, 12, 12, 16
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			n=10: sigma[1,10]=18, sigma[3,10]=1134; Intersection[{1,2,3,6,9,18},{1,2,3,6,7,9,14,18,21,27,42,54,63, 81,126,162,189,378,567,1134}]={1,2,3,6,9,18}, so a(10)=6.
		

Crossrefs

Programs

  • Mathematica
    g1[x_] := Divisors[DivisorSigma[1, x]] g2[x_] := Divisors[DivisorSigma[3, x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}]
    (* Second program: *)
    Table[Length@ Apply[Intersection, Divisors@ Array[DivisorSigma[2 # - 1, n] &, 2]], {n, 87}] (* Michael De Vlieger, Nov 23 2017 *)
  • PARI
    A073809(n) = numdiv(gcd(sigma(n),sigma(n,3))); \\ Antti Karttunen, Nov 23 2017

Formula

a(n) = Card[Intersection[D[A000203(n)], D[A001158(n)]]] where D[x] is the set of divisors of x.

A173438 Number of divisors d of number n such that d does not divide sigma(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 4, 1, 4, 3, 2, 1, 2, 2, 2, 3, 0, 1, 4, 1, 5, 2, 2, 3, 8, 1, 2, 3, 4, 1, 4, 1, 3, 4, 2, 1, 7, 2, 5, 2, 4, 1, 4, 3, 4, 3, 2, 1, 6, 1, 2, 5, 6, 3, 4, 1, 4, 2, 6, 1, 10, 1, 2, 5, 3, 3, 4, 1, 8, 4, 2, 1, 6, 3, 2, 2, 5, 1, 6, 2, 3, 3, 2, 2, 6, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Feb 18 2010

Keywords

Comments

a(n) = 0 for multiply-perfect numbers (A007691).

Examples

			For n = 12, a(12) = 3; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; d does not divide sigma(n) for 3 divisors d: 3, 6 and 12.
		

Crossrefs

Programs

  • Maple
    A173438 := proc(n)
        local sd,a;
        sd := numtheory[sigma](n) ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(sd,d) <> 0 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    Table[DivisorSum[n, 1 &, ! Divisible[DivisorSigma[1, n], #] &], {n, 98}] (* Michael De Vlieger, Oct 08 2017 *)
  • PARI
    A173438(n) = (numdiv(n) - numdiv(gcd(sigma(n), n))); \\ (See PARI-code in A073802) - Antti Karttunen, Oct 08 2017

Formula

a(n) = A000005(n) - A073802(n).
a(n) = tau(n) - tau(gcd(n,sigma(n))). - Antti Karttunen, Oct 08 2017

A327154 a(n) = Product_{d|n, d>1} A008578(1+A286561(sigma(n),d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 1, 1, 1, 2, 1, 6, 1, 5, 2, 1, 1, 2, 1, 2, 1, 3, 1, 48, 1, 2, 1, 80, 1, 45, 1, 1, 2, 2, 1, 1, 1, 3, 1, 8, 1, 44, 1, 6, 2, 5, 1, 6, 1, 1, 3, 2, 1, 20, 1, 20, 1, 2, 1, 80, 1, 11, 1, 1, 1, 63, 1, 2, 2, 7, 1, 2, 1, 2, 1, 6, 1, 20, 1, 2, 1, 2, 1, 264, 1, 3, 2, 6, 1, 48, 2, 10, 1, 7, 2, 108, 1, 1, 2, 1, 1, 125, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Crossrefs

Programs

  • PARI
    A327154(n) = { my(m=1,s=sigma(n),v); fordiv(n,d,if((d>1) && ((v = valuation(s,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|n, d>1} A008578(1+A286561(sigma(n),d)), where sigma = A000203.
Other identities. For all n >= 1:
1+A001222(a(n)) = A073802(n).

A327155 a(n) = Product_{d|sigma(n), d>1} A008578(1+A286561(n,d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 8, 1, 1, 1, 2, 1, 6, 1, 2, 2, 1, 1, 3, 1, 3, 1, 2, 1, 80, 1, 2, 1, 48, 1, 8, 1, 1, 2, 2, 1, 1, 1, 2, 1, 20, 1, 8, 1, 6, 3, 2, 1, 21, 1, 1, 2, 3, 1, 20, 1, 20, 1, 2, 1, 48, 1, 2, 1, 1, 1, 8, 1, 3, 2, 2, 1, 3, 1, 2, 1, 6, 1, 8, 1, 7, 1, 2, 1, 48, 1, 2, 2, 10, 1, 48, 2, 6, 1, 2, 2, 264, 1, 1, 3, 1, 1, 8, 1, 5, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Crossrefs

Programs

  • PARI
    A327155(n) = { my(m=1,v); fordiv(sigma(n),d,if((d>1) && ((v = valuation(n,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|sigma(n), d>1} A008578(1+A286561(n,d)), where sigma = A000203.
Other identities. For all n >= 1:
1+A001222(a(n)) = A073802(n).
Showing 1-10 of 16 results. Next