cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A286595 Compound filter (2-adic valuation & deficiency/abundance): a(n) = P(A001511(n), A286449(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 2, 6, 4, 12, 11, 10, 16, 5, 22, 48, 37, 8, 11, 15, 46, 68, 67, 108, 22, 107, 106, 175, 137, 30, 154, 18, 172, 138, 191, 21, 67, 173, 106, 256, 232, 57, 106, 329, 277, 138, 301, 13, 37, 353, 352, 501, 407, 467, 191, 24, 466, 138, 497, 634, 562, 632, 631, 744, 704, 192, 106, 28, 352, 138, 742, 39, 301, 38, 781, 950, 862, 597, 596, 58, 631, 138, 904, 1133, 407
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286449(n))^2) - A001511(n) - 3*A286449(n)).

A286568 Compound filter (phi(n) & 2-adic valuation of sigma(n)): a(n) = P(A000010(n), A286357(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 1, 8, 3, 14, 8, 42, 10, 21, 14, 76, 19, 90, 42, 63, 36, 152, 21, 208, 44, 148, 76, 322, 53, 210, 90, 228, 117, 434, 63, 625, 136, 296, 152, 402, 78, 702, 208, 375, 152, 860, 148, 988, 251, 324, 322, 1271, 169, 903, 210, 627, 324, 1430, 228, 943, 375, 816, 434, 1828, 187, 1890, 625, 777, 528, 1273, 296, 2344, 560, 1220, 402, 2698, 300, 2700, 702, 901
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A000010(n) = eulerphi(n);
    A001511(n) = (1+valuation(n,2));
    A286357(n) = A001511(sigma(n));
    A286568(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n));
    
  • Python
    from sympy import divisor_sigma as D, totient
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def a286357(n): return a001511(D(n))
    def a(n): return T(totient(n), a286357(n)) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286568 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A286357 n)) 2) (- (A000010 n)) (- (* 3 (A286357 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n)).
Showing 1-2 of 2 results.