cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286350 a(n) = 2*a(n-1) - a(n-2) + a(n-4) for n>3, a(0)=0, a(1)=a(2)=2, a(3)=3.

Original entry on oeis.org

0, 2, 2, 3, 4, 7, 12, 20, 32, 51, 82, 133, 216, 350, 566, 915, 1480, 2395, 3876, 6272, 10148, 16419, 26566, 42985, 69552, 112538, 182090, 294627, 476716, 771343, 1248060, 2019404, 3267464, 5286867, 8554330, 13841197, 22395528, 36236726, 58632254, 94868979
Offset: 0

Views

Author

Paul Curtz, May 08 2017

Keywords

Comments

This is b(n) in A286311(n). As mentioned in A286311, the pair A286311(n) and, here a(n), are autosequences of the first kind.

Crossrefs

Cf. A022086, A128834, A226956 (same recurrence), A286311.

Programs

  • Magma
    I:=[0,2,2,3]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 15 2018
  • Mathematica
    LinearRecurrence[{2, -1, 0, 1}, {0, 2, 2, 3}, 40] (* or *)
    CoefficientList[Series[x (2 - 2 x + x^2)/((1 - x + x^2) (1 - x - x^2)), {x, 0, 39}], x] (* Michael De Vlieger, May 09 2017 *)
  • PARI
    concat(0, Vec(x*(2 - 2*x + x^2) / ((1 - x + x^2)*(1 - x - x^2)) + O(x^60))) \\ Colin Barker, May 09 2017
    

Formula

a(n) = A286311(n) + A128834(n).
a(n) = A022086(n) - A286311(n).
a(n) = (A022086(n) + A128834(n))/2.
G.f.: x*(2 - 2*x + x^2) / ((1 - x + x^2)*(1 - x - x^2)). - Colin Barker, May 09 2017

Extensions

More terms from Colin Barker, May 09 2017