A286352 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + x^j)^k.
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 1, -1, 0, 1, -4, 3, -2, 1, 0, 1, -5, 6, -4, 4, -1, 0, 1, -6, 10, -8, 9, -4, 1, 0, 1, -7, 15, -15, 17, -12, 5, -1, 0, 1, -8, 21, -26, 30, -28, 15, -6, 2, 0, 1, -9, 28, -42, 51, -56, 38, -21, 9, -2, 0, 1, -10, 36, -64, 84
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, -1, -2, -3, -4, -5, ... 0, 0, 1, 3, 6, 10, ... 0, -1, -2, -4, -8, -15, ... 0, 1, 4, 9, 17, 30, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
G.f. of column k: Product_{j>=1} 1/(1 + x^j)^k.