A286357 One more than the exponent of the highest power of 2 dividing sigma(n): a(n) = A001511(A000203(n)).
1, 1, 3, 1, 2, 3, 4, 1, 1, 2, 3, 3, 2, 4, 4, 1, 2, 1, 3, 2, 6, 3, 4, 3, 1, 2, 4, 4, 2, 4, 6, 1, 5, 2, 5, 1, 2, 3, 4, 2, 2, 6, 3, 3, 2, 4, 5, 3, 1, 1, 4, 2, 2, 4, 4, 4, 5, 2, 3, 4, 2, 6, 4, 1, 3, 5, 3, 2, 6, 5, 4, 1, 2, 2, 3, 3, 6, 4, 5, 2, 1, 2, 3, 6, 3, 3, 4, 3, 2, 2, 5, 4, 8, 5, 4, 3, 2, 1, 3, 1, 2, 4, 4, 2, 7, 2, 3, 4, 2, 4, 4, 4, 2, 5, 5, 2, 2, 3, 5, 4
Offset: 1
Keywords
Links
Programs
-
Mathematica
Table[IntegerExponent[DivisorSigma[1,n],2]+1,{n,120}] (* Harvey P. Dale, Sep 04 2023 *)
-
PARI
A001511(n) = (1+valuation(n,2)); A286357(n) = A001511(sigma(n)); for(n=1, 10000, write("b286357.txt", n, " ", A286357(n)));
-
Python
from sympy import divisor_sigma as D def a001511(n): return bin(n)[2:][::-1].index("1") + 1 def a(n): return a001511(D(n)) # Indranil Ghosh, May 12 2017
-
Python
from sympy import divisor_sigma def A286357(n): return ((m:=int(divisor_sigma(n)))&-m).bit_length() # Chai Wah Wu, Jul 10 2022
-
Scheme
(define (A286357 n) (A001511 (A000203 n))) (define (A286357 n) (A070939 (/ (A000203 n) (A161942 n))))