A286361 Least number with the same prime signature as {the largest divisor of n with only prime factors of the form 4k+1} has: a(n) = A046523(A170818(n)).
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 6, 1, 1, 2, 1, 2, 1, 1, 2, 2, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 6, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Python
from sympy import factorint from operator import mul def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a072438(n): f = factorint(n) return 1 if n == 1 else reduce(mul, [1 if i%4==1 else i**f[i] for i in f]) def a(n): return a046523(n/a072438(n)) # Indranil Ghosh, May 09 2017
-
Scheme
(define (A286361 n) (A046523 (A170818 n)))