A286385 a(n) = A003961(n) - A000203(n).
0, 0, 1, 2, 1, 3, 3, 12, 12, 3, 1, 17, 3, 9, 11, 50, 1, 36, 3, 21, 23, 3, 5, 75, 18, 9, 85, 43, 1, 33, 5, 180, 17, 3, 29, 134, 3, 9, 29, 99, 1, 69, 3, 33, 97, 15, 5, 281, 64, 54, 23, 55, 5, 255, 19, 177, 35, 3, 1, 147, 5, 15, 171, 602, 35, 51, 3, 45, 49, 87, 1, 480, 5, 9, 121, 67, 47, 87, 3, 381, 504, 3, 5, 271, 25, 9, 35, 171, 7, 291, 75, 93, 57, 15, 41, 963
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16383
Crossrefs
Programs
-
Mathematica
Array[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] - DivisorSigma[1, #] &, 96] (* Michael De Vlieger, Oct 05 2020 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961 A286385(n) = (A003961(n) - sigma(n)); for(n=1, 16384, write("b286385.txt", n, " ", A286385(n)));
-
Python
from sympy import factorint, nextprime, divisor_sigma as D from operator import mul def a048673(n): f = factorint(n) return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))/2 def a(n): return 2*a048673(n) - D(n) - 1 # Indranil Ghosh, May 12 2017
-
Scheme
(define (A286385 n) (- (A003961 n) (A000203 n)))
Formula
a(n) = Sum_{d|n} A337549(d). - Antti Karttunen, Sep 22 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) - Pi^2/12 = 1.24152934..., where q(p) = nextprime(p) (A151800). - Amiram Eldar, Dec 21 2023
Comments