cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022

A033879 Deficiency of n, or 2n - (sum of divisors of n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51
Offset: 1

Views

Author

Keywords

Comments

Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007
a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014
If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019
It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - _Omar E. Pol_, Dec 27 2013
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Cf. A000396 (positions of zeros), A005100 (of positive terms), A005101 (of negative terms).
Cf. A141545 (positions of a(n) = -12).
For this sequence applied to various permutations of natural numbers and some other sequences, see A323174, A323244, A324055, A324185, A324546, A324574, A324575, A324654, A325379.

Programs

Formula

a(n) = -A033880(n).
a(n) = A005843(n) - A000203(n). - Omar E. Pol, Dec 14 2008
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
a(n) = A286385(n) - A252748(n). - Antti Karttunen, May 13 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
a(n) = Sum_{d|n} A008683(n/d)*A296075(d).
a(n) = A065620(A295881(n)) = A117966(A295882(n)).
a(n) = A294898(n) + A000120(n).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
a(n) = A325314(n) - A325313(n) = A325814(n) - A034460(n) = A325978(n) - A325977(n).
a(n) = A325976(n) - A325826(n) = A325959(n) - A325969(n) = A003958(n) - A324044(n).
a(n) = A326049(n) - A326050(n) = A326055(n) - A326054(n) = A326044(n) - A326045(n).
a(n) = A326058(n) - A326059(n) = A326068(n) - A326067(n).
a(n) = A326128(n) - A326127(n) = A066503(n) - A326143(n).
a(n) = A318878(n) - A318879(n).
a(A228058(n)) = A325379(n). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023

Extensions

Definition corrected by N. J. A. Sloane, Jul 04 2005

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A326042 a(n) = A064989(sigma(A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, and A064989 shifts it back towards smaller primes.

Original entry on oeis.org

1, 1, 2, 11, 1, 2, 2, 3, 29, 1, 5, 22, 4, 2, 2, 49, 3, 29, 2, 11, 4, 5, 6, 6, 34, 4, 22, 22, 1, 2, 17, 55, 10, 3, 2, 319, 10, 2, 8, 3, 7, 4, 2, 55, 29, 6, 8, 98, 85, 34, 6, 44, 6, 22, 5, 6, 4, 1, 29, 22, 13, 17, 58, 1091, 4, 10, 4, 33, 12, 2, 31, 87, 3, 10, 68, 22, 10, 8, 10, 49, 469, 7, 12, 44, 3, 2, 2, 15, 25, 29, 8, 66, 34, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2019

Keywords

Comments

For any other number n than those in A326182 we have a(n) < A003961(n).
Fixed points k (for which a(k) = k) satisfy A003973(k) = 2^e * A003961(k) for some exponent e >= 0. Applying A003961 to such numbers gives the odd terms in A336702, of which there are likely to be just a single instance, its initial 1. (Clarified Nov 07 2021).
Conjecture: There are no other fixed points than a(1) = 1. If true, then there are no odd perfect numbers. This condition is equivalent to the condition that if A161942 has no fixed points larger than one, then there are no odd perfect numbers. This follows as whenever k is a fixed point, that is, a(k) = k, then we should also have A003961(a(k)) = A003961(A064989(sigma(A003961(k)))) = A161942(A003961(k)) = A003961(k). Note that A003961 is an injective and surjective mapping from natural numbers to odd numbers, A064989 is its (left) inverse, and composition A003961(A064989(n)) is equivalent to A000265(n).
From Antti Karttunen, Aug 05 2020: (Start)
For any hypothetical odd perfect number x, we would have A003973(k) = 2 * A003961(k), with k = A064989(x) and x = A003961(k). Thus we would have a(k) = A064989(sigma(A003961(k))) = A064989(sigma(x)) = A064989(2*x) = A064989(x) = k. On the other hand, A003973(k) = sigma(A003961(k)) < A003961(A003961(k)) [see A286385 for the reason why], so a necessary condition for this is that x should be one of the terms of A246282. (Clarified Dec 01 2020).
(End)

Crossrefs

Cf. A000037, A000203, A000265, A000593, A003961, A003973, A064989, A161942, A162284, A246282, A286385, A326041, A326182, A336702 (numbers whose abundancy index is a power of 2).
Cf. A348736 [n - a(n)], A348738 [a(n) < n], A348739 [a(n) > n], A348750 [= A064989(a(A003961(n)))], A348940 [gcd(n,a(n))], A348941, A348942, A351456, A353767, A353790, A353794.
Cf. also A332223 for another conjugation of sigma.

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; a1[1] = 1; a1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := a2[DivisorSigma[1, a1[n]]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));

Formula

a(n) = A064989(A003973(n)) = A064989(sigma(A003961(n))).
For k in A000037, a(k) = A064989(A003973(k)/2) = A064989((1/2)*sigma(A003961(k))).
Multiplicative with a(p^e) = A064989((q^(e+1)-1)/(q-1)), where q = nextPrime(p). - Antti Karttunen, Nov 05 2021
a(n) = A353790(n) / A353767(n) = A353794(n) / A351456(n). - Antti Karttunen, May 13 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 05 2021

A342671 a(n) = gcd(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 3, 1, 15, 1, 3, 5, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 3, 1, 21, 1, 3, 1, 1, 7, 3, 1, 9, 1, 3, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 5, 9, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 13, 7, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A349756, A350071 [= a(n^2)], A355828 (Dirichlet inverse).
Cf. A349169, A349745, A355833, A355924 (applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));

Formula

a(n) = gcd(A000203(n), A003961(n)).
a(n) = gcd(A000203(n), A286385(n)) = gcd(A003961(n), A286385(n)).
a(n) = A341529(n) / A342672(n).
From Antti Karttunen, Jul 21 2022: (Start)
a(n) = A003961(n) / A349161(n).
a(n) = A000203(n) / A349162(n).
a(n) = A161942(n) / A348992(n).
a(n) = A003961(A349163(n)) = A003961(n/A349164(n)).
(End)

A252748 a(n) = A003961(n) - 2*n.

Original entry on oeis.org

-1, -1, -1, 1, -3, 3, -3, 11, 7, 1, -9, 21, -9, 5, 5, 49, -15, 39, -15, 23, 13, -5, -17, 87, -1, -1, 71, 43, -27, 45, -25, 179, -1, -11, 7, 153, -33, -7, 7, 109, -39, 81, -39, 29, 85, -5, -41, 309, 23, 47, -7, 49, -47, 267, -19, 185, 1, -23, -57, 195, -55, -13, 149, 601, -11, 63, -63, 35, 7, 91, -69, 531, -67, -25, 95, 55, -11, 99
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Crossrefs

Partial sums: A252749.
Cf. A246282 (positions of the positive terms), A252742 (their characteristic function).

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1] - 2 n, {n, 78}] (* Michael De Vlieger, May 14 2017 *)
  • Scheme
    (define (A252748 n) (- (A003961 n) (* 2 n)))

Formula

a(n) = A003961(n) - 2*n.
a(n) = A252750(A156552(n)).
a(n) = A286385(n) - A033879(n). - Antti Karttunen, May 13 2017
Other identities. For all n >= 1:
sign(a(n)) = (-1)^(1+A252742(n)).

A336702 Numbers whose abundancy index is a power of 2.

Original entry on oeis.org

1, 6, 28, 496, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392, 2305843008139952128
Offset: 1

Views

Author

Antti Karttunen, Aug 05 2020

Keywords

Comments

Apart from missing 2, this sequence gives all numbers k such that the binary expansion of A156552(k) is a prefix of that of A156552(sigma(k)), that is, for k > 1, numbers k for which sigma(k) is a descendant of k in A005940-tree. This follows because of the two transitions x -> A005843(x) (doubling) and x -> A003961(x) (prime shift) used to generate descendants in A005940-tree, using A003961 at any step of the process will ruin the chances of encountering sigma(k) anywhere further down that subtree.
Proof: Any left child in A005940 (i.e., A003961(k) for k) is larger than sigma(k), for any k > 2 [see A286385 for a proof], and A003961(n) > n for all n > 1. Thus, apart from A003961(2) = 3 = sigma(2), A003961^t(k) > sigma(k), where A003961^t means t-fold application of prime shift, here with t >= 1. On the other hand, sigma(2n) > sigma(n) for all n, thus taking first some doubling steps before a run of one or more prime shift steps will not rescue us, as neither will taking further doubling steps after a bout of prime shifts.
The first terms of A325637 not included in this sequence are 154345556085770649600 and 9186050031556349952000, as they have abundancy index 6.
From Antti Karttunen, Nov 29 2021: (Start)
Odd terms of this sequence are given by the intersection of A349169 and A349174.
A064989 applied to the odd terms of this sequence gives the fixed points of A326042, i.e., the positions of zeros in A348736, and a subset of the positions of ones in A348941.
Odd terms of this sequence form a subsequence of A348943, but should occur neither in A348748 nor in A348749.
(End)

Examples

			For 30240, sigma(30240) = 120960 = 4*30240, therefore, as sigma(k)/k = 2^2, a power of two, 30240 is present.
		

Crossrefs

Cf. A000396, A027687 (subsequences).
Subsequence of A007691, and after 1, also subsequence of A325637.
Union with {2} gives the positions of zeros in A347381.

Programs

  • PARI
    isA336702(n) = { my(r=sigma(n)/n); (1==denominator(r)&&!bitand(r, r-1)); }; \\ (Corrected) - Antti Karttunen, Aug 31 2021

A246282 Numbers k for which A003961(k) > 2*k; numbers n such that if n = Product_{k >= 1} (p_k)^(c_k), then Product_{k >= 1} (p_{k+1})^(c_k) > 2*n, where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 57, 60, 63, 64, 66, 68, 69, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 91, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A003961(n) > 2*n.
Numbers n such that A048673(n) > n.
The sequence grows as:
a(10) = 18
a(100) = 192
a(1000) = 1830
a(10000) = 18636
a(100000) = 187350
a(1000000) = 1865226
a(10000000) = 18654333
and the powers of 10 occur at:
a(5) = 10
a(53) = 100
a(536) = 1000
a(5423) = 10000
a(53290) = 100000
a(535797) = 1000000
a(5361886) = 10000000
suggesting that the ratio a(n)/n is converging to an constant and an arbitrary natural number is slightly more likely to be in this sequence than in the complement A246281. See also comments at A246351 and compare to quite a different ratio present in the "inverse" case A246362.
From Antti Karttunen, Aug 27 2020: (Start)
Any perfect number, including all odd perfect numbers (if such numbers exist), must occur in this sequence. See A286385 and A326042 for the reason why.
Like abundancy index (ratio A000203(n)/n), also ratio A003961(n)/n is multiplicative and always > 1 for all n > 1. Thus if the number has a proper divisor that is in this sequence, then the number itself also is. See A337372 for terms included here, but with no proper divisor in this sequence. (End)
For k >= 2, if m * A130789(k) is a term then m * A130789(k-1) is a term. - Peter Munn, Sep 01 2025
Could be called "primeshift-abundant numbers", in analogy with A005101. - Antti Karttunen, Sep 01 2025

Examples

			3 = p_2 (3 is the second prime, A000040(2)) is not a member, because p_3 = 5 (5 is the next prime after 3, A000040(3)) and 5/3 < 2.
4 = 2*2 = p_1 * p_1 is a member, as p_2 * p_2 = 3*3 = 9, and 9/4 > 2.
33 = 3*11 = p_2 * p_5 is not a member, as p_3 * p_6 = 5*13 = 65, and 65/33 < 2.
35 = 5*7 = p_3 * p_4 is a member, as p_4 * p_5 = 7*11 = 77, and 77/35 > 2.
		

Crossrefs

Complement: A246281.
Setwise difference of A246352 and A048674.
Cf. A000040, A003961, A048673, A130789, A246362, A252742 (characteristic function), A286385, A326042, A337345.
Positions of positive terms in A252748 and in A337345.
Union of A337372 (primitive terms), A341610 (non-primitive terms).
Cf. also A275717, A275718.

Programs

  • Mathematica
    Select[Range[144], 2 # < Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    isA246282(n) = (A003961(n) > (n+n));
    n = 0; i = 0; while(i < 10000, n++; if(isA246282(n), i++; write("b246282.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246282 (MATCHING-POS 1 1 (lambda (n) (> (A003961 n) (* 2 n)))))
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246282 (MATCHING-POS 1 1 (lambda (n) (> (A048673 n) n))))

Extensions

A new shorter version of name prepended by Antti Karttunen, Aug 27 2020

A341529 a(n) = sigma(n) * A003961(n), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 9, 20, 63, 42, 180, 88, 405, 325, 378, 156, 1260, 238, 792, 840, 2511, 342, 2925, 460, 2646, 1760, 1404, 696, 8100, 1519, 2142, 5000, 5544, 930, 7560, 1184, 15309, 3120, 3078, 3696, 20475, 1558, 4140, 4760, 17010, 1806, 15840, 2068, 9828, 13650, 6264, 2544, 50220, 6897, 13671, 6840, 14994, 3186, 45000, 6552, 35640
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Question: Does the maximum value of ratio A341529(n)/A341528(n) stay below 2?
From Amiram Eldar and Antti Karttunen, Jan 28 2023: (Start)
Answer to the above question is yes: Sup_{n>=1} A341529(n)/A341528(n) = 2.
Proof:
f(n) = A341529(n)/A341528(n) is a multiplicative function with f(p^e) = (1 + 1/p + ... + 1/p^e)/(1 + 1/q + ... + 1/q^e), where q = nextprime(p).
First we prove a lemma which states that f(p^(1+e)) / f(p^e) > 1, for any prime p, and exponent e.
We note that (sigma(p^(1+e))/(p^(1+e))) / (sigma(p^e)/(p^e)) = (sigma(p^(1+e))/(p*sigma(p^e))) = sigma(p^(1+e)) / (sigma(p^(1+e)) - 1), so setting q = nextprime(p), we can write the ratio f(p^(1+e)) / f(p^e) as (sigma(p^(1+e))/(sigma(p^(1+e))-1)) / (sigma(q^(1+e))/(sigma(q^(1+e))-1)), and to prove this to be > 1, we just note that the denominator is less than the numerator, because sigma(p^e) is monotonically growing with respect to the increasing prime p.
Since q > p, we have f(p^e) > 1 for all p and all e>=1, and together with the above lemma this shows that f(n) <= f(n*m) for all m>=1.
Suppose n = Product_i p_i^e_i, and let pmax = max(p_i), emax = max(e_i), so n is a divisor of m = (pmax#)^emax, and f(n) < f(m), where p# = 2 * 3 * ... * p is the primorial of p, A034386(p).
Then f(m) = f(2^emax) * f(3^emax) * ... * f(pmax^emax) = (1 + 1/2 + ... + 1/2^emax)/(1 + 1/3 + ... + 1/3^emax)) * (1 + 1/3 + ... + 1/3^emax)/(1 + 1/5 + ... + 1/5^emax)) * ... * (1 + 1/p + ... + 1/p^emax)/(1 + 1/q + ... + 1/q^emax))[telescoping product] = (1 + 1/2 + ... + 1/2^emax)/(1 + 1/qmax + ... + 1/qmax^emax) <= (1 + 1/2 + ... + 1/2^emax) < 2, where qmax = nextprime(pmax).
So we have f(n) < 2 for all n.
To prove that 2 is the supremum, we have lim_{e,k -> oo) f(prime(k)#^e) = 2.
(End)

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, #]*Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &, 56] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341529(n) = (sigma(n)*A003961(n));

Formula

Multiplicative with a(p^e) = q^e * (p^(e+1)-1)/(p-1), where q = nextPrime(p).
a(n) = A000203(n) * A003961(n).
For all n > 1, a(n) > A341528(n).
For all n >= 1, A072861(n) <= a(n) <= A003961(n)^2. [See A286385].
a(n) = A341528(n) + A341512(n) = A342671(n) * A342672(n) = A342661(A003961(n)). - Antti Karttunen, Mar 22 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} p^4*(p-1)/((p^3-nextprime(p))*(p^2-nextprime(p))) = 3.0664809..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022

A246281 Numbers k for which A003961(k) < 2*k; Numbers n such that if n = product_{k >= 1} (p_k)^(c_k), then product_{k >= 1} (p_{k+1})^(c_k) < 2*n, where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 22, 23, 25, 26, 29, 31, 33, 34, 37, 38, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 67, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 137, 139
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A003961(n) < 2*n.
Numbers n such that A048673(n) <= n.
All primes (A000040) are members. (Cf. Bertrand's postulate).
All terms are deficient (in A005100). See A286385. - Antti Karttunen, Aug 27 2020

Examples

			1 is present, as 1 = empty product and 1 < 2.
2 = p_1 is in the sequence, as p_2 = 3 and 3/2 < 2.
4 = p_1 * p_1 is not a member, as p_2 * p_2 = 3*3 = 9, and 9/4 > 2.
22 = 2*11 = p_1 * p_5 is a member, as p_2 * p_6 = 39, and 39/22 < 2.
		

Crossrefs

Complement: A246282.
Union of A246351 and A048674.
Subsequence: A000040.
Subsequence of A005100.
Positions of zeros in A252742, in A336836, and in A337345.
Positions of negative terms in A252748.

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] = nextprime(f[i,1]+1)); factorback(f);
    isA246281(n) = (A003961(n) < (n+n));
    n = 0; i = 0; while(i < 10000, n++; if(isA246281(n), i++; write("b246281.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246281 (MATCHING-POS 1 1 (lambda (n) (<= (A048673 n) n))))

Extensions

A new shorter version of name prepended by Antti Karttunen, Aug 27 2020
Showing 1-10 of 40 results. Next