cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A341512 a(n) = A341529(n) - A341528(n) = (sigma(n)*A003961(n)) - (n*sigma(A003961(n))).

Original entry on oeis.org

0, 1, 2, 11, 2, 36, 4, 85, 46, 58, 2, 324, 4, 120, 120, 575, 2, 693, 4, 566, 248, 172, 6, 2340, 94, 270, 788, 1176, 2, 1800, 6, 3661, 348, 358, 336, 5967, 4, 492, 548, 4210, 2, 3744, 4, 1820, 2490, 744, 6, 15372, 380, 2271, 720, 2826, 6, 11304, 392, 8760, 992, 946, 2, 15480, 6, 1232, 5164, 22631, 636, 5904, 4, 3866
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Crossrefs

Cf. Sequences A001359, A029710, A031924 give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

Programs

  • Mathematica
    Array[#2 DivisorSigma[1, #1] - #1 DivisorSigma[1, #2] & @@ {#, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 68] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341528(n) = (n*sigma(A003961(n)));
    A341529(n) = (sigma(n)*A003961(n));
    A341512(n) = (A341529(n)-A341528(n));

Formula

a(n) = A341529(n) - A341528(n) = (sigma(n)*A003961(n)) - (n*sigma(A003961(n))).
For all primes p, a(p) = (q*(p+1)) - (p*(q+1)) = (pq + q) - (pq + p) = q - p = A001223(A000720(p)), where q = nextprime(p) = A003961(p).
And in general, a(p^e) = (q^e * (p^(e+1)-1)/(p-1)) - ((p^e) * (q^(e+1)-1)/(q-1)), where q = A003961(p).
Thus, a(p^2) = (p + 1)*q^2 - p^2*q - p^2,
a(p^3) = (p^2 + p + 1)*q^3 - p^3*q^2 - p^3*q - p^3,
a(p^4) = (p^3 + p^2 + p + 1)*q^4 - p^4*q^3 - p^4*q^2 - p^4*q - p^4,
etc.

A342667 Largest prime in the numerator of ratio A341528(n)/A341529(n) (when presented in its lowest terms).

Original entry on oeis.org

1, 2, 3, 13, 5, 2, 7, 2, 31, 5, 11, 13, 13, 7, 3, 11, 17, 31, 19, 13, 7, 11, 23, 2, 19, 13, 13, 13, 29, 2, 31, 13, 11, 17, 5, 31, 37, 19, 13, 5, 41, 7, 43, 11, 31, 23, 47, 11, 7, 19, 17, 13, 53, 13, 11, 7, 19, 29, 59, 13, 61, 31, 31, 1093, 13, 11, 67, 17, 23, 5, 71, 31, 73, 37, 19, 19, 7, 13, 79, 11, 71, 41, 83, 13
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Comments

Equally, largest prime in the denominator of ratio A342661(A003961(n)) / A342662(A003961(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A341526(n) = { my(s=A003961(n)); numerator((sigma(s)*n)/(sigma(n)*s)); };
    A342667(n) = A006530(A341526(n));

Formula

a(n) = A006530(A341526(n)).
a(n) = A006530(A342664(A003961(n))).

A347125 Möbius transform of A341529, sigma(n) * A003961(n).

Original entry on oeis.org

1, 8, 19, 54, 41, 152, 87, 342, 305, 328, 155, 1026, 237, 696, 779, 2106, 341, 2440, 459, 2214, 1653, 1240, 695, 6498, 1477, 1896, 4675, 4698, 929, 6232, 1183, 12798, 2945, 2728, 3567, 16470, 1557, 3672, 4503, 14022, 1805, 13224, 2067, 8370, 12505, 5560, 2543, 40014, 6809, 11816, 6479, 12798, 3185, 37400, 6355
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Multiplicative because A341529 is.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{q = NextPrime[p]}, q^(e-1) * (p^e * (q*p-1)-q+1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2023 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A341529(n) = (sigma(n)*A003961(n));
    A347125(n) = sumdiv(n,d,moebius(n/d)*A341529(d))

Formula

a(n) = Sum_{d|n} A008683(n/d) * A341529(d).
a(n) = A346239(n) + A347124(n).
Multiplicative with a(p^e) = q^(e-1)*(p^e*(q*p-1)-q+1)/(p-1), where q = A151800(p). - Sebastian Karlsson, Sep 02 2021
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = (1/zeta(3)) / Product_{p prime} ((p^2-q)*(p^3-q))/(p^4*(p-1)) = 7.6530842... , and q(p) = A151800(p). - Amiram Eldar, Dec 24 2023

A342668 Largest prime in the denominator of ratio A341528(n)/A341529(n) (when presented in its lowest terms).

Original entry on oeis.org

1, 3, 5, 7, 7, 5, 11, 3, 13, 7, 13, 7, 17, 11, 7, 31, 19, 13, 23, 7, 11, 13, 29, 5, 31, 17, 5, 11, 31, 7, 37, 3, 13, 19, 11, 7, 41, 23, 17, 7, 43, 11, 47, 3, 13, 29, 53, 31, 11, 31, 19, 17, 59, 5, 13, 11, 23, 31, 61, 7, 67, 37, 13, 127, 17, 13, 71, 19, 29, 11, 73, 13, 79, 41, 31, 23, 13, 17, 83, 31, 11, 43, 89, 11
Offset: 1

Views

Author

Antti Karttunen, Mar 24 2021

Keywords

Crossrefs

Cf. A341628 (same sequence applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A341527(n) = { my(s=A003961(n)); denominator((sigma(s)*n)/(sigma(n)*s)); };
    A342668(n) = A006530(A341527(n));

Formula

a(n) = A006530(A341527(n)).

A378229 Dirichlet inverse of A341529, where A341529(n) = sigma(n) * A003961(n), and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

1, -9, -20, 18, -42, 180, -88, 0, 75, 378, -156, -360, -238, 792, 840, 0, -342, -675, -460, -756, 1760, 1404, -696, 0, 245, 2142, 0, -1584, -930, -7560, -1184, 0, 3120, 3078, 3696, 1350, -1558, 4140, 4760, 0, -1806, -15840, -2068, -2808, -3150, 6264, -2544, 0, 847, -2205, 6840, -4284, -3186, 0, 6552, 0, 9200, 8370
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2024

Keywords

Comments

Multiplicative because A341529 is.

Crossrefs

Dirichlet inverse of A341529.
Cf. also A378228.

Programs

  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341529(n) = (sigma(n)*A003961(n));
    memoA378229 = Map();
    A378229(n) = if(1==n,1,my(v); if(mapisdefined(memoA378229,n,&v), v, v = -sumdiv(n,d,if(dA341529(n/d)*A378229(d),0)); mapput(memoA378229,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA341529(n/d) * a(d).

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022

A342671 a(n) = gcd(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 3, 1, 15, 1, 3, 5, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 3, 1, 21, 1, 3, 1, 1, 7, 3, 1, 9, 1, 3, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 5, 9, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 13, 7, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A349756, A350071 [= a(n^2)], A355828 (Dirichlet inverse).
Cf. A349169, A349745, A355833, A355924 (applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));

Formula

a(n) = gcd(A000203(n), A003961(n)).
a(n) = gcd(A000203(n), A286385(n)) = gcd(A003961(n), A286385(n)).
a(n) = A341529(n) / A342672(n).
From Antti Karttunen, Jul 21 2022: (Start)
a(n) = A003961(n) / A349161(n).
a(n) = A000203(n) / A349162(n).
a(n) = A161942(n) / A348992(n).
a(n) = A003961(A349163(n)) = A003961(n/A349164(n)).
(End)

A341528 a(n) = n * sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 8, 18, 52, 40, 144, 84, 320, 279, 320, 154, 936, 234, 672, 720, 1936, 340, 2232, 456, 2080, 1512, 1232, 690, 5760, 1425, 1872, 4212, 4368, 928, 5760, 1178, 11648, 2772, 2720, 3360, 14508, 1554, 3648, 4212, 12800, 1804, 12096, 2064, 8008, 11160, 5520, 2538, 34848, 6517, 11400, 6120, 12168, 3180, 33696, 6160, 26880
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#1 DivisorSigma[1, #2] & @@ {#, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 56] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A003973(n) = sigma(A003961(n));
    A341528(n) = (n*A003973(n));

Formula

Multiplicative with a(p^e) = (p^e) * (q^(e+1)-1)/(q-1) where q = nextPrime(p).
a(n) = n * A003973(n) = n * A000203(A003961(n)).
From Antti Karttunen, Mar 29 2021: (Start)
a(n) <= A341529(n).
a(n) = A341529(n) - A341512(n).
a(n) = A342662(A003961(n)).
(End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 2.26342530..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022

A349169 Numbers k such that k * gcd(sigma(k), A003961(k)) is equal to the odd part of {sigma(k) * gcd(k, A003961(k))}, where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 15, 105, 3003, 3465, 13923, 45045, 264537, 459459, 745875, 1541475, 5221125, 8729721, 10790325, 14171625, 29288025, 34563375, 57034575, 71430975, 99201375, 109643625, 144729585, 205016175, 255835125, 295708875, 356080725, 399242025, 419159475, 449323875, 928602675, 939495375, 1083656925, 1941623775, 1962350685, 2083228875
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A348990(k) [= k/gcd(k, A003961(k))] is equal to A348992(k), which is the odd part of A349162(k), thus all terms must be odd, as A348990 preserves the parity of its argument.
Equally, numbers k for which gcd(A064987(k), A191002(k)) is equal to A000265(gcd(A064987(k), A341529(k))).
Also odd numbers k for which A348993(k) = A319627(k).
Odd terms of A336702 are given by the intersection of this sequence and A349174.
Conjectures:
(1) After 1, all terms are multiples of 3. (Why?)
(2) After 1, all terms are in A104210, in other words, for all n > 1, gcd(a(n), A003961(a(n))) > 1. Note that if we encountered a term k with gcd(k, A003961(k)) = 1, then we would have discovered an odd multiperfect number.
(3) Apart from 1, 15, 105, 3003, 13923, 264537, all other terms are abundant. [These apparently are also the only terms that are not Zumkeller, A083207. Note added Dec 05 2024]
(4) After 1, all terms are in A248150. (Cf. also A386430).
(5) After 1, all terms are in A348748.
(6) Apart from 1, there are no common terms with A349753.
Note: If any of the last four conjectures could be proved, it would refute the existence of odd perfect numbers at once. Note that it seems that gcd(sigma(k), A003961(k)) < k, for all k except these four: 1, 2, 20, 160.
Questions:
(1) For any term x here, can 2*x be in A349745? (Partial answer: at least x should be in A191218 and should not be a multiple of 3). Would this then imply that x is an odd perfect number? (Which could explain the points (1) and (4) in above, assuming the nonexistence of opn's).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1/GCD[#1, #3] == #2/(2^IntegerExponent[#2, 2]*GCD[#2, #3]) & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349169(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == A000265(s)*gcd(n,u)); }; \\ (Program simplified Nov 30 2021)

Formula

For all n >= 1, A007949(A000203(a(n))) = A007949(a(n)). [sigma preserves the 3-adic valuation of the terms of this sequence] - Antti Karttunen, Nov 29 2021

Extensions

Name changed and comment section rewritten by Antti Karttunen, Nov 29 2021

A341605 Square array A(n,k) = A017665(A246278(n,k)), read by falling antidiagonals; numerator of the abundancy index as applied onto prime shift array A246278.

Original entry on oeis.org

3, 7, 4, 2, 13, 6, 15, 8, 31, 8, 9, 40, 48, 57, 12, 7, 32, 156, 96, 133, 14, 12, 26, 72, 400, 168, 183, 18, 31, 16, 248, 16, 1464, 252, 307, 20, 13, 121, 84, 684, 216, 2380, 360, 381, 24, 21, 124, 781, 144, 1862, 280, 5220, 480, 553, 30, 18, 104, 342, 2801, 240, 3294, 432, 7240, 720, 871, 32
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Ratio A341605(row, col)/A341606(row, col) shows the abundancy index when applied to the natural numbers > 1 as ordered in the prime shift array A246278:
n = 1 2 3 4 5 6
2n = 2 4 6 8 10 12
----+--------------------------------------------------------------------------
1 | 3/2, 7/4, 2/1, 15/8, 9/5, 7/3,
2 | 4/3, 13/9, 8/5, 40/27, 32/21, 26/15,
3 | 6/5, 31/25, 48/35, 156/125, 72/55, 248/175,
4 | 8/7, 57/49, 96/77, 400/343, 16/13, 684/539,
5 | 12/11, 133/121, 168/143, 1464/1331, 216/187, 1862/1573,
6 | 14/13, 183/169, 252/221, 2380/2197, 280/247, 3294/2873,
7 | 18/17, 307/289, 360/323, 5220/4913, 432/391, 6140/5491,
we see that when going down in each column, the magnitude of the ratio decreases monotonically, which follows because the abundancy index of prime(i+1)^e is less than that of prime(i)^e (see A336389). The first ratio that is < 2 (corresponding to the first deficient number obtained when 2*n is successively prime shifted) is found at row number 1+A336835(2*n) = 1+A378985(n) for column n.
Each ratio r at row n and column k is a product of the topmost ratio (on row 1), and the product of all ratios on rows 1..(row-1) given in arrays A341626/A341627:
n = 1 2 3 4 5 6
2n = 2 4 6 8 10 12
----+--------------------------------------------------------------------------
1 | 8/9, 52/63, 4/5, 64/81, 160/189, 26/35,
2 | 9/10, 279/325, 6/7, 1053/1250, 189/220, 372/455,
3 | 20/21, 1425/1519, 10/11, 12500/13377, 110/117, 4275/4774,
4 | 21/22, 343/363, 49/52, 62769/66550, 351/374, 2401/2574,
5 | 77/78, 22143/22477, 33/34, 791945/804102, 6545/6669, 199287/205751,
6 | 117/119, 51883/52887, 130/133, 573417/584647, 13338/13685, 518830/531981,
In other words, if r(row,col) = A341605(row,col)/A341606(row,col) and d(row,col) = A341626(row,col)/A341627(row,col), then r(row+1,col) = r(row,col)*d(row,col), that is, each column in the latter arrays of ratios gives the first quotients of ratios in the corresponding columns in the former array, and they are all < 1.
See also comments and examples in A341606.
By lemma given in A341529, the ratio A341626/A341627 stays in open interval (0.5 .. 1). - Antti Karttunen, Jan 02 2025

Examples

			The top left corner of the array:
  k=   1    2    3      4    5      6    7       8      9     10    11      12
2k =   2    4    6      8   10     12   14      16     18     20    22      24
----+--------------------------------------------------------------------------
n=1 |  3,   7,   2,    15,   9,     7,  12,     31,    13,    21,   18,      5,
  2 |  4,  13,   8,    40,  32,    26,  16,    121,   124,   104,   56,     16,
  3 |  6,  31,  48,   156,  72,   248,  84,    781,   342,   372,  108,   1248,
  4 |  8,  57,  96,   400,  16,   684, 144,   2801,   152,   114,  160,   4800,
  5 | 12, 133, 168,  1464, 216,  1862, 240,  16105,  2196,  2394,  288,  20496,
  6 | 14, 183, 252,  2380, 280,  3294, 336,  30941,  4298,  3660,  420,   2520,
  7 | 18, 307, 360,  5220, 432,  6140, 540,  88741,  6858,  7368,  576, 104400,
  8 | 20, 381, 480,  7240, 600,  9144, 640, 137561, 11060, 11430,   40, 173760,
  9 | 24, 553, 720, 12720, 768, 16590, 912, 292561, 20904, 17696, 1008, 381600,
etc.
		

Crossrefs

Cf. A008864 (column 1), A378995 (row 1).
Cf. A341606 (denominators), A341626 (numerators of the columnwise first quotients of A341605/A341606), A341627 (and their denominators), A355925, A355927.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A017665(n) = numerator(sigma(n)/n);
    A341605sq(row,col) = A017665(A246278sq(row,col));
    A341605list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341605sq(col,(a-(col-1))))); (v); };
    v341605 = A341605list(up_to);
    A341605(n) = v341605[n];

Formula

A(n, k) = A017665(A246278(n, k)).
A(n, k) = A355927(n, k) / A355925(n, k). - Antti Karttunen, Jul 22 2022
A(n, k) = A379500(n, k) / A341606(n, k). - Antti Karttunen, Jan 04 2025
Showing 1-10 of 26 results. Next