cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A346239 Möbius transform of A341512, sigma(n)*A003961(n) - n*sigma(A003961(n)).

Original entry on oeis.org

0, 1, 2, 10, 2, 33, 4, 74, 44, 55, 2, 278, 4, 115, 116, 490, 2, 613, 4, 498, 242, 169, 6, 1942, 92, 265, 742, 1046, 2, 1591, 6, 3086, 344, 355, 330, 4986, 4, 487, 542, 3570, 2, 3347, 4, 1638, 2326, 737, 6, 12542, 376, 2121, 716, 2546, 6, 9869, 388, 7510, 986, 943, 2, 12894, 6, 1225, 4872, 18970, 630, 5353, 4, 3498, 1492
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Cf. also the sequences A001359, A029710, A031924 that give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A341512(d).
a(n) = A341512(n) - A346240(n).
a(n) = A347125(n) - A347124(n). - Antti Karttunen, Aug 25 2021

A347096 a(1) = 1; a(n) = -Sum_{d|n, d < n} A341512(n/d) * a(d), where A341512(n) = sigma(n)*A003961(n) - n*sigma(A003961(n)).

Original entry on oeis.org

1, -1, -2, -10, -2, -32, -4, -64, -42, -54, -2, -214, -4, -112, -112, -316, -2, -469, -4, -412, -232, -168, -6, -792, -90, -262, -612, -860, -2, -1208, -6, -1216, -340, -354, -320, -1655, -4, -484, -532, -1760, -2, -2528, -4, -1438, -1850, -732, -6, 160, -364, -1863, -712, -2210, -6, -4596, -384, -3696, -976, -942, -2
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2021

Keywords

Comments

Dirichlet inverse of the pointwise sum of A341512 and A063524 (1, 0, 0, 0, ...).

Crossrefs

Programs

  • PARI
    up_to = 16384;
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341512(n) = { my(u=A003961(n)); ((sigma(n)*u) - (n*sigma(u))); };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA341512(n));
    v347096 = DirInverseCorrect(vector(up_to,n,Aux347096(n)));
    A347096(n) = v347096[n];

Formula

a(1) = 1; and for n > 1, a(n) = -Sum_{d|n, d < n} A341512(n/d) * a(d).
For all n >= 1, a(A000040(n)) = -A001223(n).

A347097 a(1) = 2; and for n > 1, a(n) = A341512(n) + A347096(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 21, 4, 4, 0, 110, 0, 8, 8, 259, 0, 224, 0, 154, 16, 4, 0, 1548, 4, 8, 176, 316, 0, 592, 0, 2445, 8, 4, 16, 4312, 0, 8, 16, 2450, 0, 1216, 0, 382, 640, 12, 0, 15532, 16, 408, 8, 616, 0, 6708, 8, 5064, 16, 4, 0, 12272, 0, 12, 1312, 19543, 16, 1504, 0, 754, 24, 1568, 0, 50561, 0, 8, 832, 1060, 16
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2021

Keywords

Comments

Sum of {the pointwise sum of A341512 and A063524 (1, 0, 0, 0, ...)} and its Dirichlet inverse.
The first negative term is a(5760) = -1223227750.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341512(n) = { my(u=A003961(n)); ((sigma(n)*u) - (n*sigma(u))); };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA341512(n));
    v347096 = DirInverseCorrect(vector(up_to,n,Aux347096(n)));
    A347096(n) = v347096[n];
    A347097(n) = if(1==n,2,A341512(n) + A347096(n));

Formula

a(1) = 2, and for n>1, a(n) = -Sum_{d|n, 1A341512(d) * A347096(n/d).
For all n >= 1, a(A001248(n)) = A001223(n)^2.

A346240 Difference between A341512 and its Möbius transform.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 0, 11, 2, 3, 0, 46, 0, 5, 4, 85, 0, 80, 0, 68, 6, 3, 0, 398, 2, 5, 46, 130, 0, 209, 0, 575, 4, 3, 6, 981, 0, 5, 6, 640, 0, 397, 0, 182, 164, 7, 0, 2830, 4, 150, 4, 280, 0, 1435, 4, 1250, 6, 3, 0, 2586, 0, 7, 292, 3661, 6, 551, 0, 368, 8, 507, 0, 7983, 0, 5, 212, 502, 6, 847, 0, 4700, 788, 3, 0, 5078, 4, 5, 4, 1894
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Programs

Formula

a(n) = -Sum_{d|n, dA008683(n/d) * A341512(d).
a(n) = A341512(n) - A346239(n).

A341529 a(n) = sigma(n) * A003961(n), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 9, 20, 63, 42, 180, 88, 405, 325, 378, 156, 1260, 238, 792, 840, 2511, 342, 2925, 460, 2646, 1760, 1404, 696, 8100, 1519, 2142, 5000, 5544, 930, 7560, 1184, 15309, 3120, 3078, 3696, 20475, 1558, 4140, 4760, 17010, 1806, 15840, 2068, 9828, 13650, 6264, 2544, 50220, 6897, 13671, 6840, 14994, 3186, 45000, 6552, 35640
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Question: Does the maximum value of ratio A341529(n)/A341528(n) stay below 2?
From Amiram Eldar and Antti Karttunen, Jan 28 2023: (Start)
Answer to the above question is yes: Sup_{n>=1} A341529(n)/A341528(n) = 2.
Proof:
f(n) = A341529(n)/A341528(n) is a multiplicative function with f(p^e) = (1 + 1/p + ... + 1/p^e)/(1 + 1/q + ... + 1/q^e), where q = nextprime(p).
First we prove a lemma which states that f(p^(1+e)) / f(p^e) > 1, for any prime p, and exponent e.
We note that (sigma(p^(1+e))/(p^(1+e))) / (sigma(p^e)/(p^e)) = (sigma(p^(1+e))/(p*sigma(p^e))) = sigma(p^(1+e)) / (sigma(p^(1+e)) - 1), so setting q = nextprime(p), we can write the ratio f(p^(1+e)) / f(p^e) as (sigma(p^(1+e))/(sigma(p^(1+e))-1)) / (sigma(q^(1+e))/(sigma(q^(1+e))-1)), and to prove this to be > 1, we just note that the denominator is less than the numerator, because sigma(p^e) is monotonically growing with respect to the increasing prime p.
Since q > p, we have f(p^e) > 1 for all p and all e>=1, and together with the above lemma this shows that f(n) <= f(n*m) for all m>=1.
Suppose n = Product_i p_i^e_i, and let pmax = max(p_i), emax = max(e_i), so n is a divisor of m = (pmax#)^emax, and f(n) < f(m), where p# = 2 * 3 * ... * p is the primorial of p, A034386(p).
Then f(m) = f(2^emax) * f(3^emax) * ... * f(pmax^emax) = (1 + 1/2 + ... + 1/2^emax)/(1 + 1/3 + ... + 1/3^emax)) * (1 + 1/3 + ... + 1/3^emax)/(1 + 1/5 + ... + 1/5^emax)) * ... * (1 + 1/p + ... + 1/p^emax)/(1 + 1/q + ... + 1/q^emax))[telescoping product] = (1 + 1/2 + ... + 1/2^emax)/(1 + 1/qmax + ... + 1/qmax^emax) <= (1 + 1/2 + ... + 1/2^emax) < 2, where qmax = nextprime(pmax).
So we have f(n) < 2 for all n.
To prove that 2 is the supremum, we have lim_{e,k -> oo) f(prime(k)#^e) = 2.
(End)

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, #]*Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &, 56] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341529(n) = (sigma(n)*A003961(n));

Formula

Multiplicative with a(p^e) = q^e * (p^(e+1)-1)/(p-1), where q = nextPrime(p).
a(n) = A000203(n) * A003961(n).
For all n > 1, a(n) > A341528(n).
For all n >= 1, A072861(n) <= a(n) <= A003961(n)^2. [See A286385].
a(n) = A341528(n) + A341512(n) = A342671(n) * A342672(n) = A342661(A003961(n)). - Antti Karttunen, Mar 22 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} p^4*(p-1)/((p^3-nextprime(p))*(p^2-nextprime(p))) = 3.0664809..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022

A341528 a(n) = n * sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 8, 18, 52, 40, 144, 84, 320, 279, 320, 154, 936, 234, 672, 720, 1936, 340, 2232, 456, 2080, 1512, 1232, 690, 5760, 1425, 1872, 4212, 4368, 928, 5760, 1178, 11648, 2772, 2720, 3360, 14508, 1554, 3648, 4212, 12800, 1804, 12096, 2064, 8008, 11160, 5520, 2538, 34848, 6517, 11400, 6120, 12168, 3180, 33696, 6160, 26880
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#1 DivisorSigma[1, #2] & @@ {#, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 56] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A003973(n) = sigma(A003961(n));
    A341528(n) = (n*A003973(n));

Formula

Multiplicative with a(p^e) = (p^e) * (q^(e+1)-1)/(q-1) where q = nextPrime(p).
a(n) = n * A003973(n) = n * A000203(A003961(n)).
From Antti Karttunen, Mar 29 2021: (Start)
a(n) <= A341529(n).
a(n) = A341529(n) - A341512(n).
a(n) = A342662(A003961(n)).
(End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 2.26342530..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022

A341530 a(n) = gcd(n*sigma(A003961(n)), sigma(n)*A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 36, 4, 5, 1, 2, 2, 36, 2, 24, 120, 1, 2, 9, 4, 2, 8, 4, 6, 180, 1, 18, 4, 168, 2, 360, 2, 7, 12, 2, 336, 117, 2, 12, 4, 10, 2, 288, 4, 364, 30, 24, 6, 36, 19, 3, 360, 18, 6, 72, 56, 120, 16, 2, 2, 360, 2, 16, 4, 1, 12, 144, 4, 2, 60, 336, 2, 45, 2, 6, 10, 12, 264, 72, 4, 2, 11, 2, 6, 2016, 4, 12, 24
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Crossrefs

Cf. A000203, A003961, A003973, A028982 (positions of odd terms), A341512, A341526, A341527, A341528, A341529, A342670.
Cf. A342674 (same sequence applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };

Formula

a(n) = gcd(A341528(n), A341529(n)) = gcd(n*A003973(n), A000203(n)*A003961(n)).
a(n) = gcd(A341512(n), A341528(n)) = gcd(A341512(n), A341529(n)) = A342670(A003961(n)). - Antti Karttunen, Mar 24 2021

A332223 a(1) = 1, and for n > 1, a(n) = A005940(1+sigma(A156552(n))).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 16, 7, 25, 18, 32, 25, 64, 21, 21, 49, 128, 27, 256, 35, 40, 121, 512, 49, 125, 385, 49, 121, 1024, 13, 2048, 13, 225, 1573, 105, 77, 4096, 57, 187, 343, 8192, 63, 16384, 65, 55, 4693, 32768, 121, 625, 32, 15625, 85, 65536, 81, 180, 91, 253, 9945, 131072, 175, 262144, 508079, 625, 847, 729, 169, 524288, 2057, 2601, 105, 1048576
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Comments

From Antti Karttunen, Jul 31 - Aug 06 2020: (Start)
As a curiosity, like with sigma, also here a(14) = a(15). [Cf. also A003973 and A341512]
Question: is it possible that a(k) = 2*k for any k? If not, then the deficiency (A033879) cannot be -1, and there are no quasiperfect numbers. If there were such cases, then A156552(k) = q would be an instance of quasiperfect number, which should also be an odd square, thus k would need to be of the form 4u+2.
In range n <= 10000, a(n) is a nontrivial multiple of n only at n = [25, 35, 343, 539, 847, 3315] with a(n) = [125, 105, 2401, 2695, 2541, 9945]. The quotients are thus also odd: 5, 3, 7, 5, 3, 3.
This rather meager empirical evidence motivates a conjecture that no quotient a(n)/n may be an even integer, and particularly, never a power of 2 larger than one, which (when translated back to the ordinary, unconjugated sigma) claims that it is not possible that sigma(n) = 2^k * n + 2^k - 1, for any n > 1, k > 0. See also A336700 and A336701, where this leads to a rather surprising empirical observation.
(End)

Crossrefs

Cf. A003961, A332449, A332450, A332451, A332460 (for other functions similarly conjugated).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332223(n) = if(1==n,n,A005940(1+sigma(A156552(n))));
    
  • PARI
    A332223(n) = if(1==n,n,A005940(1+sumdiv(A156552(n),d,d))); \\ Antti Karttunen, Aug 04 2020

Formula

For n > 1, a(n) = A005940(1+A000203(A156552(n))) = A005940(1+A323243(n)).
a(A324201(n)) = A003961(A324201(n)). [It's an open problem whether A324201 gives all such solutions]
For n > 1, a(n) = A005940(1 + (Sum_{d|A156552(n)} d)). - Antti Karttunen, Aug 04 2020

A347121 a(n) = A347136(n) - 2*n.

Original entry on oeis.org

-1, 1, 2, 11, 2, 28, 4, 49, 31, 40, 2, 128, 4, 62, 66, 179, 2, 209, 4, 188, 102, 76, 6, 472, 59, 98, 218, 286, 2, 420, 6, 601, 126, 112, 146, 859, 4, 134, 162, 700, 2, 636, 4, 368, 498, 168, 6, 1592, 149, 445, 186, 466, 6, 1252, 178, 1058, 222, 184, 2, 1704, 6, 216, 756, 1931, 230, 828, 4, 548, 278, 940, 2, 3041, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Crossrefs

Cf. A000040, A001223, A003961, A347136, A347122 (Möbius transform).
Cf. also A341512, A346239, A347236.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347121(n) = (sumdiv(n,d,d*A003961(n/d))-(2*n));

Formula

a(n) = A347136(n) - 2*n.
a(A000040(n)) = A001223(n).

A347124 Möbius transform of A341528, n * sigma(A003961(n)).

Original entry on oeis.org

1, 7, 17, 44, 39, 119, 83, 268, 261, 273, 153, 748, 233, 581, 663, 1616, 339, 1827, 455, 1716, 1411, 1071, 689, 4556, 1385, 1631, 3933, 3652, 927, 4641, 1177, 9712, 2601, 2373, 3237, 11484, 1553, 3185, 3961, 10452, 1803, 9877, 2063, 6732, 10179, 4823, 2537, 27472, 6433, 9695, 5763, 10252, 3179, 27531, 5967, 22244
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Multiplicative because A341528 is.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{q = NextPrime[p]}, p^(e-1) * (q^e * (p*q-1) - p + 1)/(q-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2023 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A003973(n) = sigma(A003961(n));
    A341528(n) = (n*A003973(n));
    A347124(n) = sumdiv(n,d,moebius(n/d)*A341528(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A341528(d).
a(n) = A347125(n) - A346239(n).
Multiplicative with a(p^e) = p^(e-1)*(q^e*(p*q-1)-p+1)/(q-1), where q = A151800(p). - Sebastian Karlsson, Sep 02 2021
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = (1/zeta(3)) / Product_{p prime} (1 - (q(p)-p)/p^2 - q(p)/p^3) = 5.6488805... , and q(p) = A151800(p). - Amiram Eldar, Dec 24 2023
Showing 1-10 of 11 results. Next