cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A346235 Dirichlet inverse of A341530, gcd(n*sigma(A003961(n)), sigma(n)*A003961(n)).

Original entry on oeis.org

1, -1, -2, 0, -2, -32, -4, -4, 3, 2, -2, 34, -2, -16, -112, 8, -2, 125, -4, 0, 8, 0, -6, -128, 3, -14, -8, -124, -2, 8, -2, -10, -4, 2, -320, 920, -2, -4, 4, 8, -2, 64, -4, -358, 430, -12, -6, 528, -3, -5, -352, 16, -6, -368, -48, 224, 0, 2, -2, 104, -2, -12, -12, 28, -4, 16, -4, 0, -36, 400, -2, -440, -2, -2, 450, 8, -248, 128
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };
    v346235 = DirInverseCorrect(vector(up_to,n,A341530(n)));
    A346235(n) = v346235[n];

A346236 Sum of A341530 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 1, 4, 4, 0, 70, 0, 8, 8, 9, 0, 134, 0, 2, 16, 4, 0, 52, 4, 4, -4, 44, 0, 368, 0, -3, 8, 4, 16, 1037, 0, 8, 8, 18, 0, 352, 0, 6, 460, 12, 0, 564, 16, -2, 8, 34, 0, -296, 8, 344, 16, 4, 0, 464, 0, 4, -8, 29, 8, 160, 0, 2, 24, 736, 0, -395, 0, 4, 460, 20, 16, 200, 0, -14, 21, 4, 0, 2152, 8, 8, 8, 740
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };
    v346235 = DirInverseCorrect(vector(up_to,n,A341530(n)));
    A346235(n) = v346235[n];
    A346236(n) = (A341530(n)+A346235(n));

Formula

a(n) = A341530(n) + A346235(n).

A342674 Square array A(n,k) = A341530(A246278(n,k)), read by falling antidiagonals; A341530 as applied onto prime shift array A246278.

Original entry on oeis.org

1, 1, 2, 36, 1, 2, 5, 120, 1, 4, 2, 4, 336, 19, 2, 36, 8, 4, 264, 1, 2, 24, 30, 56, 8, 1092, 1, 2, 1, 12, 28, 56, 4, 612, 1, 4, 9, 11, 12, 418, 8, 20, 2280, 1, 6, 2, 10, 1, 48, 26, 8, 20, 5520, 1, 2, 4, 4, 266, 1, 48, 34, 24, 40, 6960, 1, 2, 180, 4, 42, 308, 1, 12, 76, 24, 60, 1984, 3, 2, 18, 240, 4, 798, 26, 1, 20, 138, 12, 4, 2812, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 24 2021

Keywords

Examples

			The top left corner of the array:
   k =  1  2     3   4   5    6   7   8    9   10   11     12    13   14
  2k =  2  4     6   8  10   12  14  16   18   20   22     24    26   28
     |
-----+--------------------------------------------------------------------------
n= 1 | 1,  1,   36,  5,  2,  36, 24,  1,   9,   2,   4,    180,  18, 168,
   2 | 2,  1,  120,  4,  8,  30, 12, 11,  10,   4,   4,    240, 360,   6,
   3 | 2,  1,  336,  4, 56,  28, 12,  1, 266,  42,   4,    672, 120,   2,
   4 | 4, 19,  264,  8, 56, 418, 48,  1, 308, 798,  32,    528,  24,  38,
   5 | 2,  1, 1092,  4,  8,  26, 48,  1,  26,   6,  12,  37128,   8,  76,
   6 | 2,  1,  612, 20,  8,  34, 12,  1,  34,  12,  12,   6120,   4,   6,
   7 | 2,  1, 2280, 20, 24,  76, 20,  1,  38,   6, 152,   4560,  12,   6,
   8 | 4,  1, 5520, 40, 24, 138, 16,  1,  92,   2, 152,  11040,  24,   2,
   9 | 6,  1, 6960, 60, 12,  58, 12,  1, 174,   2,  24,  13920,  96,  14,
  10 | 2,  1, 1984,  4, 12,  62,  4,  1, 186,   2,  24, 146816, 288,   6,
  11 | 2,  3, 2812,  4,  8, 222, 32, 11,  74,  42,  12,   5624,  24,  12,
  12 | 2,  1, 3444,  4,  8,  82, 12,  1,  82,  12,  36,   6888,  12,  18,
		

Crossrefs

Programs

  • PARI
    up_to = 91;
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A342674sq(row,col) = A341530(A246278sq(row,col));
    A342674list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A342674sq(col,(a-(col-1))))); (v); };
    v342674 = A342674list(up_to);
    A342674(n) = v342674[n];

Formula

A(n,k) = A341530(A246278(n,k)).

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A341529 a(n) = sigma(n) * A003961(n), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 9, 20, 63, 42, 180, 88, 405, 325, 378, 156, 1260, 238, 792, 840, 2511, 342, 2925, 460, 2646, 1760, 1404, 696, 8100, 1519, 2142, 5000, 5544, 930, 7560, 1184, 15309, 3120, 3078, 3696, 20475, 1558, 4140, 4760, 17010, 1806, 15840, 2068, 9828, 13650, 6264, 2544, 50220, 6897, 13671, 6840, 14994, 3186, 45000, 6552, 35640
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Question: Does the maximum value of ratio A341529(n)/A341528(n) stay below 2?
From Amiram Eldar and Antti Karttunen, Jan 28 2023: (Start)
Answer to the above question is yes: Sup_{n>=1} A341529(n)/A341528(n) = 2.
Proof:
f(n) = A341529(n)/A341528(n) is a multiplicative function with f(p^e) = (1 + 1/p + ... + 1/p^e)/(1 + 1/q + ... + 1/q^e), where q = nextprime(p).
First we prove a lemma which states that f(p^(1+e)) / f(p^e) > 1, for any prime p, and exponent e.
We note that (sigma(p^(1+e))/(p^(1+e))) / (sigma(p^e)/(p^e)) = (sigma(p^(1+e))/(p*sigma(p^e))) = sigma(p^(1+e)) / (sigma(p^(1+e)) - 1), so setting q = nextprime(p), we can write the ratio f(p^(1+e)) / f(p^e) as (sigma(p^(1+e))/(sigma(p^(1+e))-1)) / (sigma(q^(1+e))/(sigma(q^(1+e))-1)), and to prove this to be > 1, we just note that the denominator is less than the numerator, because sigma(p^e) is monotonically growing with respect to the increasing prime p.
Since q > p, we have f(p^e) > 1 for all p and all e>=1, and together with the above lemma this shows that f(n) <= f(n*m) for all m>=1.
Suppose n = Product_i p_i^e_i, and let pmax = max(p_i), emax = max(e_i), so n is a divisor of m = (pmax#)^emax, and f(n) < f(m), where p# = 2 * 3 * ... * p is the primorial of p, A034386(p).
Then f(m) = f(2^emax) * f(3^emax) * ... * f(pmax^emax) = (1 + 1/2 + ... + 1/2^emax)/(1 + 1/3 + ... + 1/3^emax)) * (1 + 1/3 + ... + 1/3^emax)/(1 + 1/5 + ... + 1/5^emax)) * ... * (1 + 1/p + ... + 1/p^emax)/(1 + 1/q + ... + 1/q^emax))[telescoping product] = (1 + 1/2 + ... + 1/2^emax)/(1 + 1/qmax + ... + 1/qmax^emax) <= (1 + 1/2 + ... + 1/2^emax) < 2, where qmax = nextprime(pmax).
So we have f(n) < 2 for all n.
To prove that 2 is the supremum, we have lim_{e,k -> oo) f(prime(k)#^e) = 2.
(End)

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, #]*Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &, 56] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341529(n) = (sigma(n)*A003961(n));

Formula

Multiplicative with a(p^e) = q^e * (p^(e+1)-1)/(p-1), where q = nextPrime(p).
a(n) = A000203(n) * A003961(n).
For all n > 1, a(n) > A341528(n).
For all n >= 1, A072861(n) <= a(n) <= A003961(n)^2. [See A286385].
a(n) = A341528(n) + A341512(n) = A342671(n) * A342672(n) = A342661(A003961(n)). - Antti Karttunen, Mar 22 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} p^4*(p-1)/((p^3-nextprime(p))*(p^2-nextprime(p))) = 3.0664809..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022

A341528 a(n) = n * sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 8, 18, 52, 40, 144, 84, 320, 279, 320, 154, 936, 234, 672, 720, 1936, 340, 2232, 456, 2080, 1512, 1232, 690, 5760, 1425, 1872, 4212, 4368, 928, 5760, 1178, 11648, 2772, 2720, 3360, 14508, 1554, 3648, 4212, 12800, 1804, 12096, 2064, 8008, 11160, 5520, 2538, 34848, 6517, 11400, 6120, 12168, 3180, 33696, 6160, 26880
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#1 DivisorSigma[1, #2] & @@ {#, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 56] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A003973(n) = sigma(A003961(n));
    A341528(n) = (n*A003973(n));

Formula

Multiplicative with a(p^e) = (p^e) * (q^(e+1)-1)/(q-1) where q = nextPrime(p).
a(n) = n * A003973(n) = n * A000203(A003961(n)).
From Antti Karttunen, Mar 29 2021: (Start)
a(n) <= A341529(n).
a(n) = A341529(n) - A341512(n).
a(n) = A342662(A003961(n)).
(End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 2.26342530..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022

A336849 a(n) = A003961(n) / gcd(A003961(n), sigma(A003961(n))), where A003961 is the prime shift towards larger primes.

Original entry on oeis.org

1, 3, 5, 9, 7, 5, 11, 27, 25, 21, 13, 15, 17, 11, 35, 81, 19, 75, 23, 63, 55, 39, 29, 9, 49, 17, 125, 33, 31, 35, 37, 243, 65, 57, 77, 225, 41, 23, 85, 189, 43, 55, 47, 9, 175, 29, 53, 135, 121, 49, 19, 17, 59, 125, 13, 99, 115, 93, 61, 105, 67, 111, 275, 729, 119, 65, 71, 171, 29, 77, 73, 135, 79, 41, 245, 69, 143
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

If there are no more 1's in this sequence after the initial one, then there are no odd terms of A007691 (multiply perfect numbers) larger than one.
Denominator of the ratio A003973(n) / A003961(n), also denominator of the ratio (A341528(n)/A341529(n)) / (n / sigma(n)). - Antti Karttunen, Feb 16 2021

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := (gn = g[n])/GCD[gn, DivisorSigma[1, gn]]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336849(n) = { my(u=A003961(n)); (u/gcd(u, sigma(u))); };
    \\ Or alternatively as:
    A336849(n) = { my(u=A003961(n)); denominator(sigma(u)/u); };

Formula

a(n) = A003961(n) / A336850(n) = A003961(n) / gcd(A003961(n), A003973(n)).
a(n) = A017666(A003961(n)).

A341512 a(n) = A341529(n) - A341528(n) = (sigma(n)*A003961(n)) - (n*sigma(A003961(n))).

Original entry on oeis.org

0, 1, 2, 11, 2, 36, 4, 85, 46, 58, 2, 324, 4, 120, 120, 575, 2, 693, 4, 566, 248, 172, 6, 2340, 94, 270, 788, 1176, 2, 1800, 6, 3661, 348, 358, 336, 5967, 4, 492, 548, 4210, 2, 3744, 4, 1820, 2490, 744, 6, 15372, 380, 2271, 720, 2826, 6, 11304, 392, 8760, 992, 946, 2, 15480, 6, 1232, 5164, 22631, 636, 5904, 4, 3866
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Crossrefs

Cf. Sequences A001359, A029710, A031924 give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

Programs

  • Mathematica
    Array[#2 DivisorSigma[1, #1] - #1 DivisorSigma[1, #2] & @@ {#, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 68] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341528(n) = (n*sigma(A003961(n)));
    A341529(n) = (sigma(n)*A003961(n));
    A341512(n) = (A341529(n)-A341528(n));

Formula

a(n) = A341529(n) - A341528(n) = (sigma(n)*A003961(n)) - (n*sigma(A003961(n))).
For all primes p, a(p) = (q*(p+1)) - (p*(q+1)) = (pq + q) - (pq + p) = q - p = A001223(A000720(p)), where q = nextprime(p) = A003961(p).
And in general, a(p^e) = (q^e * (p^(e+1)-1)/(p-1)) - ((p^e) * (q^(e+1)-1)/(q-1)), where q = A003961(p).
Thus, a(p^2) = (p + 1)*q^2 - p^2*q - p^2,
a(p^3) = (p^2 + p + 1)*q^3 - p^3*q^2 - p^3*q - p^3,
a(p^4) = (p^3 + p^2 + p + 1)*q^4 - p^4*q^3 - p^4*q^2 - p^4*q - p^4,
etc.

A341527 Denominator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 9, 10, 63, 21, 5, 22, 81, 325, 189, 78, 35, 119, 33, 7, 2511, 171, 325, 115, 1323, 220, 351, 116, 45, 1519, 119, 1250, 33, 465, 21, 592, 2187, 260, 1539, 11, 175, 779, 345, 1190, 1701, 903, 55, 517, 27, 455, 261, 424, 1395, 363, 4557, 19, 833, 531, 625, 117, 297, 575, 4185, 1830, 147, 2077, 666, 7150, 92583, 833, 195
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Denominator of ratio A341528(n)/A341529(n). A341526 gives the numerator, see comments there.

Crossrefs

Cf. A341526 (numerators).
Cf. A341627 (same sequence as applied onto prime shift array A246278).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Denominator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341527(n) = { my(s=A003961(n)); denominator((sigma(s)*n)/(sigma(n)*s)); };

Formula

a(n) = A341529(n) / A341530(n) = A341529(n) / gcd(A341528(n), A341529(n)).
For all n > 1, a(n) > A341526(n).

A341526 Numerator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 8, 9, 52, 20, 4, 21, 64, 279, 160, 77, 26, 117, 28, 6, 1936, 170, 248, 114, 1040, 189, 308, 115, 32, 1425, 104, 1053, 26, 464, 16, 589, 1664, 231, 1360, 10, 124, 777, 304, 1053, 1280, 902, 42, 516, 22, 372, 230, 423, 968, 343, 3800, 17, 676, 530, 468, 110, 224, 513, 3712, 1829, 104, 2074, 589, 5859, 69952, 780, 154
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Like the ratios sigma(n)/n, A003973(n)/A003961(n) and A003961(n)/n, also the ratio r(n) = A341528(n)/A341529(n) is multiplicative: if gcd(x,y) = 1, r(x*y) = r(x)*r(y).

Crossrefs

Cf. A341527 (denominators).
Cf. A341626 (same sequence as applied onto prime shift array A246278).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Numerator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341526(n) = { my(s=A003961(n)); numerator((sigma(s)*n)/(sigma(n)*s)); };

Formula

a(n) = A341528(n) / A341530(n) = A341528(n) / gcd(A341528(n), A341529(n)).
For all n > 1, a(n) < A341527(n).
Showing 1-10 of 12 results. Next