cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A346254 Dirichlet inverse of A336849.

Original entry on oeis.org

1, -3, -5, 0, -7, 25, -11, 0, 0, 21, -13, -30, -17, 55, 35, 0, -19, -100, -23, 0, 55, 39, -29, 36, 0, 85, 0, -66, -31, -175, -37, 0, 65, 57, 77, 400, -41, 115, 85, 0, -43, -495, -47, 108, 0, 145, -53, -216, 0, 98, 171, -68, -59, 500, 169, 0, 115, 93, -61, 210, -67, 111, 0, 0, 119, -325, -71, 0, 261, -385, -73, -120, -79, 205, 0, -138
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Crossrefs

Cf. A000203, A003961, A003973, A336849, A346255, A346256 (positions of zeros).
Cf. also A346235, A346246, A346248.

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A336849(n) = { my(u=A003961(n)); (u/gcd(u, sigma(u))); };
    v346254 = DirInverseCorrect(vector(up_to,n,A336849(n)));
    A346254(n) = v346254[n];

Formula

a(n) = A346255(n) - A336849(n).

A346255 Sum of A336849 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 9, 0, 30, 0, 27, 25, 42, 0, -15, 0, 66, 70, 81, 0, -25, 0, 63, 110, 78, 0, 45, 49, 102, 125, -33, 0, -140, 0, 243, 130, 114, 154, 625, 0, 138, 170, 189, 0, -440, 0, 117, 175, 174, 0, -81, 121, 147, 190, -51, 0, 625, 182, 99, 230, 186, 0, 315, 0, 222, 275, 729, 238, -260, 0, 171, 290, -308, 0, 15, 0, 246, 245, -69, 286
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A336849(n) = { my(u=A003961(n)); (u/gcd(u, sigma(u))); };
    v346254 = DirInverseCorrect(vector(up_to,n,A336849(n)));
    A346254(n) = v346254[n];
    A346255(n) = (A336849(n)+A346254(n));

Formula

a(n) = A336849(n) + A346254(n).

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A003973 Inverse Möbius transform of A003961; a(n) = sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.

Original entry on oeis.org

1, 4, 6, 13, 8, 24, 12, 40, 31, 32, 14, 78, 18, 48, 48, 121, 20, 124, 24, 104, 72, 56, 30, 240, 57, 72, 156, 156, 32, 192, 38, 364, 84, 80, 96, 403, 42, 96, 108, 320, 44, 288, 48, 182, 248, 120, 54, 726, 133, 228, 120, 234, 60, 624, 112, 480, 144, 128, 62, 624, 68
Offset: 1

Views

Author

Keywords

Comments

Sum of the divisors of the prime shifted n, or equally, sum of the prime shifted divisors of n. - Antti Karttunen, Aug 17 2020

Crossrefs

Cf. A000203, A000290 (positions of odd terms), A003961, A007814, A048673, A108228, A151800, A295664, A336840.
Permutation of A008438.
Used in the definitions of the following sequences: A326042, A336838, A336841, A336844, A336846, A336847, A336848, A336849, A336850, A336851, A336852, A336856, A336931, A336932.
Cf. also A003972.

Programs

  • Mathematica
    b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]  (* Jean-François Alcover, Jul 18 2013 *)
  • PARI
    aPrime(p,e)=my(q=nextprime(p+1));(q^(e+1)-1)/(q-1)
    a(n)=my(f=factor(n));prod(i=1,#f~,aPrime(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Jul 18 2013
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; \\ Antti Karttunen, Aug 06 2020
    
  • Python
    from math import prod
    from sympy import factorint, nextprime
    def A003973(n): return prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 05 2022

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
From Antti Karttunen, Aug 06-12 2020: (Start)
a(n) = Sum_{d|n} A003961(d) = Sum_{d|A003961(n)} d.
a(n) = A000203(A003961(n)) = A000593(A003961(n)).
a(n) = 2*A336840(n) - A000005(n) = 2*Sum_{d|n} (A048673(d) - (1/2)).
a(n) = A008438(A108228(n)) = A008438(A048673(n)-1).
a(n) = A336838(n) * A336856(n).
a(n) is odd if and only if n is a square.
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 3.39513795..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022, May 30 2025

Extensions

More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 06 2020

A337339 Denominator of (1+sigma(s)) / ((s+1)/2), where s is the square of n prime-shifted once (s = A003961(n)^2 = A003961(n^2)).

Original entry on oeis.org

1, 5, 13, 41, 25, 113, 61, 365, 313, 221, 85, 1013, 145, 109, 613, 3281, 181, 2813, 265, 1985, 1513, 761, 421, 9113, 1201, 1301, 7813, 377, 481, 5513, 685, 29525, 2113, 1625, 2965, 25313, 841, 2381, 3613, 17861, 925, 13613, 1105, 6845, 15313, 3785, 1405, 82013, 7321, 10805, 4513, 11705, 1741, 70313, 4141, 8821, 6613, 865
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Comments

All terms are members of A007310, because all terms of A337336 and A337337 are.
No 1's after the initial one at a(1) => No quasiperfect numbers. See comments in A336700 & A337342.
If any quasiperfect numbers qp exist, they must occur also in A325311.
Question: Is there any reliable lower bound for this sequence? See A337340, A337341.
Duplicate values are rare, but at least two cases exist: a(21) = a(74) = 1513 and a(253) = a(554) = 71065. - Antti Karttunen, Jan 03 2024

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337339(n) = { my(s=(A003961(n)^2),u=(s+1)/2); (u/gcd(1+sigma(s), u)); };
    \\ Or alternatively as:
    A337339(n) = { my(s=A003961(n^2)); denominator((1+sigma(s))/((s+1)/2)); };

Formula

a(n) = A337336(n) / A337337(n) = A048673(n^2) / gcd(A048673(n^2), A336844(n^2)).
a(n) = A337336(n) / gcd(A337336(n), 1+A003973(n^2)).

A336850 a(n) = gcd(A003961(n), sigma(A003961(n))), where A003961 is the prime shift towards larger primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 13, 1, 3, 1, 3, 1, 3, 5, 9, 1, 3, 7, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 5, 3, 1, 5, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 9, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 15, 1, 9, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 05 2020

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A003961(n), A003973(n)) = gcd(A003961(n), A336851(n)).
a(n) = A009194(A003961(n)).
a(n) = A003961(n) / A336849(n).

A341527 Denominator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 9, 10, 63, 21, 5, 22, 81, 325, 189, 78, 35, 119, 33, 7, 2511, 171, 325, 115, 1323, 220, 351, 116, 45, 1519, 119, 1250, 33, 465, 21, 592, 2187, 260, 1539, 11, 175, 779, 345, 1190, 1701, 903, 55, 517, 27, 455, 261, 424, 1395, 363, 4557, 19, 833, 531, 625, 117, 297, 575, 4185, 1830, 147, 2077, 666, 7150, 92583, 833, 195
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Denominator of ratio A341528(n)/A341529(n). A341526 gives the numerator, see comments there.

Crossrefs

Cf. A341526 (numerators).
Cf. A341627 (same sequence as applied onto prime shift array A246278).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Denominator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341527(n) = { my(s=A003961(n)); denominator((sigma(s)*n)/(sigma(n)*s)); };

Formula

a(n) = A341529(n) / A341530(n) = A341529(n) / gcd(A341528(n), A341529(n)).
For all n > 1, a(n) > A341526(n).

A341526 Numerator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 8, 9, 52, 20, 4, 21, 64, 279, 160, 77, 26, 117, 28, 6, 1936, 170, 248, 114, 1040, 189, 308, 115, 32, 1425, 104, 1053, 26, 464, 16, 589, 1664, 231, 1360, 10, 124, 777, 304, 1053, 1280, 902, 42, 516, 22, 372, 230, 423, 968, 343, 3800, 17, 676, 530, 468, 110, 224, 513, 3712, 1829, 104, 2074, 589, 5859, 69952, 780, 154
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Like the ratios sigma(n)/n, A003973(n)/A003961(n) and A003961(n)/n, also the ratio r(n) = A341528(n)/A341529(n) is multiplicative: if gcd(x,y) = 1, r(x*y) = r(x)*r(y).

Crossrefs

Cf. A341527 (denominators).
Cf. A341626 (same sequence as applied onto prime shift array A246278).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Numerator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341526(n) = { my(s=A003961(n)); numerator((sigma(s)*n)/(sigma(n)*s)); };

Formula

a(n) = A341528(n) / A341530(n) = A341528(n) / gcd(A341528(n), A341529(n)).
For all n > 1, a(n) < A341527(n).

A336848 a(n) = A003973(n) / A336846(n).

Original entry on oeis.org

1, 2, 3, 13, 4, 2, 6, 10, 31, 8, 7, 13, 9, 4, 12, 121, 10, 62, 12, 52, 18, 14, 15, 2, 19, 6, 39, 26, 16, 8, 19, 182, 21, 20, 24, 403, 21, 8, 27, 40, 22, 12, 24, 7, 124, 10, 27, 121, 133, 38, 6, 13, 30, 26, 4, 20, 36, 32, 31, 52, 34, 38, 62, 1093, 36, 14, 36, 130, 9, 16, 37, 62, 40, 14, 57, 52, 42, 18, 42, 484, 781
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

If there are no more 1's in this sequence after the initial one, then there are no odd terms of A001599 (Ore's Harmonic Numbers) larger than one.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336848(n) = { my(u=A003961(n),s=sigma(u)); (s/gcd(s, numdiv(n)*u)); };

Formula

a(n) = A003973(n) / A336846(n).

A341525 Numerator of A003973(n) / A003961(n).

Original entry on oeis.org

1, 4, 6, 13, 8, 8, 12, 40, 31, 32, 14, 26, 18, 16, 48, 121, 20, 124, 24, 104, 72, 56, 30, 16, 57, 24, 156, 52, 32, 64, 38, 364, 84, 80, 96, 403, 42, 32, 108, 320, 44, 96, 48, 14, 248, 40, 54, 242, 133, 76, 24, 26, 60, 208, 16, 160, 144, 128, 62, 208, 68, 152, 372, 1093, 144, 112, 72, 260, 36, 128, 74, 248, 80, 56
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Also numerator of the ratio (A341528(n)/A341529(n)) / (n/sigma(n)).

Crossrefs

Cf. A336849 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/((p - 1)*p^e); g[p_, e_] := f[NextPrime[p], e]; a[1] = 1; a[n_] := Numerator[Times @@ g @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341525(n) = { my(u=A003961(n), s=sigma(u)); (s/gcd(u, s)); };

Formula

a(n) = A017665(A003961(n)).
a(n) = A003973(n) / A336850(n) = A003973(n) / gcd(A003961(n), A003973(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} A341525(k)/A336849(k) = 1 / Product_{p prime} (1 - 1/(p*nextprime(p))) = 1.3766054560..., where nextprime(p) = A151800(p). - Amiram Eldar, Dec 28 2024
Showing 1-10 of 14 results. Next