cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A346256 Positions of zeros in A346254.

Original entry on oeis.org

4, 8, 9, 16, 20, 25, 27, 32, 40, 45, 49, 56, 63, 64, 68, 75, 80, 81, 99, 116, 117, 121, 124, 125, 128, 135, 136, 147, 152, 164, 169, 171, 175, 184, 189, 192, 200, 208, 225, 232, 236, 243, 244, 248, 256, 272, 279, 280, 284, 289, 292, 296, 304, 315, 325, 328, 333, 340, 343, 344, 351, 356, 361, 363, 368, 369, 387, 400
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Crossrefs

Cf. A346254.
Cf. also A346251.

Programs

A346246 Dirichlet inverse of A344587, 2*A003961(n) - sigma(A003961(n)).

Original entry on oeis.org

1, -2, -4, -1, -6, 10, -10, -2, -3, 14, -12, 4, -16, 22, 26, -4, -18, 2, -22, 6, 42, 26, -28, 6, -5, 34, -6, 10, -30, -66, -36, -8, 50, 38, 62, 7, -40, 46, 66, 10, -42, -106, -46, 12, 14, 58, -52, 8, -9, 2, 74, 16, -58, -2, 74, 18, 90, 62, -60, -18, -66, 74, 26, -16, 98, -126, -70, 18, 114, -150, -72, 18, -78, 82, 12, 22
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Comments

Dirichlet inverse of the deficiency of prime shifted n.

Crossrefs

Cf. A000203, A003961, A003973, A323910, A344587, A346247, A346251 (positions of zeros).
Cf. also A346235, A346248, A346254.

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); };
    v346246 = DirInverseCorrect(vector(up_to,n,A344587(n)));
    A346246(n) = v346246[n];

Formula

a(n) = A323910(A003961(n)).
a(n) = A346247(n) - A344587(n).

A346248 Dirichlet inverse of -A252748, 2*n - A003961(n).

Original entry on oeis.org

1, -1, -1, 2, -3, 5, -3, 8, 8, 7, -9, 10, -9, 11, 11, 32, -15, 16, -15, 6, 19, 13, -17, 48, 8, 17, 56, 18, -27, -3, -25, 128, 17, 19, 25, 104, -33, 23, 25, 32, -39, 9, -39, -6, 24, 29, -41, 224, 32, 16, 23, 6, -47, 144, 35, 88, 31, 31, -57, 78, -55, 37, 72, 512, 43, -33, -63, -18, 41, -13, -69, 512, -67, 41, 40, -6, 43
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Comments

Zeros occur at n = 352, 26840, 34816, 3787168, ...

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    v346248 = DirInverseCorrect(vector(up_to,n,(n+n)-A003961(n)));
    A346248(n) = v346248[n];

Formula

a(n) = A346250(n) + A252748(n).

A346235 Dirichlet inverse of A341530, gcd(n*sigma(A003961(n)), sigma(n)*A003961(n)).

Original entry on oeis.org

1, -1, -2, 0, -2, -32, -4, -4, 3, 2, -2, 34, -2, -16, -112, 8, -2, 125, -4, 0, 8, 0, -6, -128, 3, -14, -8, -124, -2, 8, -2, -10, -4, 2, -320, 920, -2, -4, 4, 8, -2, 64, -4, -358, 430, -12, -6, 528, -3, -5, -352, 16, -6, -368, -48, 224, 0, 2, -2, 104, -2, -12, -12, 28, -4, 16, -4, 0, -36, 400, -2, -440, -2, -2, 450, 8, -248, 128
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };
    v346235 = DirInverseCorrect(vector(up_to,n,A341530(n)));
    A346235(n) = v346235[n];

A346255 Sum of A336849 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 9, 0, 30, 0, 27, 25, 42, 0, -15, 0, 66, 70, 81, 0, -25, 0, 63, 110, 78, 0, 45, 49, 102, 125, -33, 0, -140, 0, 243, 130, 114, 154, 625, 0, 138, 170, 189, 0, -440, 0, 117, 175, 174, 0, -81, 121, 147, 190, -51, 0, 625, 182, 99, 230, 186, 0, 315, 0, 222, 275, 729, 238, -260, 0, 171, 290, -308, 0, 15, 0, 246, 245, -69, 286
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A336849(n) = { my(u=A003961(n)); (u/gcd(u, sigma(u))); };
    v346254 = DirInverseCorrect(vector(up_to,n,A336849(n)));
    A346254(n) = v346254[n];
    A346255(n) = (A336849(n)+A346254(n));

Formula

a(n) = A336849(n) + A346254(n).
Showing 1-5 of 5 results.