A346251 Positions of zeros in A346246.
192, 1280, 4608, 11520, 28672, 180224, 274428, 288684, 2013440, 3407872
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
b[n_] := 2 n - DivisorSigma[1, n]; a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]]; Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
up_to = 16384; DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n)); v323910 = DirInverse(vector(up_to,n,A033879(n))); A323910(n) = v323910[n];
up_to = 16384; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961 v346248 = DirInverseCorrect(vector(up_to,n,(n+n)-A003961(n))); A346248(n) = v346248[n];
up_to = 65537; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961 A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); }; v346235 = DirInverseCorrect(vector(up_to,n,A341530(n))); A346235(n) = v346235[n];
up_to = 16384; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961 A336849(n) = { my(u=A003961(n)); (u/gcd(u, sigma(u))); }; v346254 = DirInverseCorrect(vector(up_to,n,A336849(n))); A346254(n) = v346254[n];
up_to = 16384; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961 A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); }; v346246 = DirInverseCorrect(vector(up_to,n,A344587(n))); A346246(n) = v346246[n]; A346247(n) = (A344587(n)+A346246(n));
f[p_, e_] := 1 - NextPrime[p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 13 2025 *)
A378220(n) = factorback(apply(p -> 1-nextprime(1+p), factor(n)[, 1]));
from math import prod from sympy import nextprime, primefactors def A378220(n): return prod(1-nextprime(p) for p in primefactors(n)) # Chai Wah Wu, Nov 23 2024
Comments