cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A346246 Dirichlet inverse of A344587, 2*A003961(n) - sigma(A003961(n)).

Original entry on oeis.org

1, -2, -4, -1, -6, 10, -10, -2, -3, 14, -12, 4, -16, 22, 26, -4, -18, 2, -22, 6, 42, 26, -28, 6, -5, 34, -6, 10, -30, -66, -36, -8, 50, 38, 62, 7, -40, 46, 66, 10, -42, -106, -46, 12, 14, 58, -52, 8, -9, 2, 74, 16, -58, -2, 74, 18, 90, 62, -60, -18, -66, 74, 26, -16, 98, -126, -70, 18, 114, -150, -72, 18, -78, 82, 12, 22
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Comments

Dirichlet inverse of the deficiency of prime shifted n.

Crossrefs

Cf. A000203, A003961, A003973, A323910, A344587, A346247, A346251 (positions of zeros).
Cf. also A346235, A346248, A346254.

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); };
    v346246 = DirInverseCorrect(vector(up_to,n,A344587(n)));
    A346246(n) = v346246[n];

Formula

a(n) = A323910(A003961(n)).
a(n) = A346247(n) - A344587(n).

A346247 Sum of A344587 (the deficiency of prime shifted n) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 16, 0, 12, 16, 24, 0, 16, 0, 40, 48, 37, 0, 28, 0, 28, 80, 48, 0, 36, 36, 64, 88, 52, 0, -48, 0, 114, 96, 72, 120, 54, 0, 88, 128, 68, 0, -64, 0, 64, 116, 112, 0, 92, 100, 68, 144, 88, 0, 124, 144, 132, 176, 120, 0, -12, 0, 144, 204, 349, 192, -72, 0, 100, 224, -72, 0, 128, 0, 160, 160, 124, 240, -88, 0, 182
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); };
    v346246 = DirInverseCorrect(vector(up_to,n,A344587(n)));
    A346246(n) = v346246[n];
    A346247(n) = (A344587(n)+A346246(n));

Formula

a(n) = A344587(n) + A346246(n).
a(n) = A323911(A003961(n)).

A153881 1 followed by -1, -1, -1, ... .

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 1

Views

Author

Mats Granvik, Jan 03 2009

Keywords

Comments

Dirichlet inverse of A074206.

Crossrefs

If prefixed by initial 0, we get A134824.
Cf. A074206 (Dirichlet inverse).

Programs

Formula

G.f: x*(1-2*x)/(1-x). - Mats Granvik, Mar 09 2009, rewritten R. J. Mathar, Mar 31 2010
a(n) = (-1)^A000040(n). - Juri-Stepan Gerasimov, Sep 10 2009
G.f.: x / (1 + x / (1 - 2*x)). - Michael Somos, Apr 02 2012
From Wesley Ivan Hurt, Jun 20 2014: (Start)
a(1) = 1; a(n) = -1, n > 1.
a(n) = 1 - 2*sign(n-1) = 1 - 2*A057427(n-1).
a(n) = (-1)^sign(1-n) = (-1)^A057427(1-n).
a(n) = 2*floor(1/n)-1 = 2*A063524(n)-1. (End)
Dirichlet g.f.: 2 - zeta(s). - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} A033879(d)*A055615(n/d) = Sum_{d|n} A344587(d)*A346234(n/d). - Antti Karttunen, Nov 22 2024

Extensions

Edited by Charles R Greathouse IV, Mar 18 2010
More terms from Antti Karttunen, Nov 22 2024

A378231 Deficiency of prime-shifted squares: a(n) = 2*A003961(n^2) - sigma(A003961(n^2)), where A003961 is fully multiplicative function with a(prime(i)) = prime(i+1).

Original entry on oeis.org

1, 5, 19, 41, 41, 47, 109, 365, 469, 141, 155, 299, 271, 449, 683, 3281, 341, 1097, 505, 1041, 1927, 663, 811, 2567, 2001, 1211, 11719, 3509, 929, -921, 1331, 29525, 2777, 1545, 4277, 6749, 1639, 2333, 4933, 9141, 1805, 851, 2161, 5235, 16733, 3815, 2755, 22979, 13177, 6805, 6239, 9671, 3421, 27347, 6131, 31049
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2024

Keywords

Comments

See comments in A377879 and in A337339.

Crossrefs

Programs

Formula

a(n) = A344587(n^2) = A377879(A003961(n)).

A378216 Dirichlet inverse of A174725.

Original entry on oeis.org

1, 0, 0, -1, 0, -2, 0, -2, -1, -2, 0, -4, 0, -2, -2, -3, 0, -4, 0, -4, -2, -2, 0, -6, -1, -2, -2, -4, 0, -6, 0, -4, -2, -2, -2, -7, 0, -2, -2, -6, 0, -6, 0, -4, -4, -2, 0, -8, -1, -4, -2, -4, 0, -6, -2, -6, -2, -2, 0, -10, 0, -2, -4, -5, -2, -6, 0, -4, -2, -6, 0, -10, 0, -2, -4, -4, -2, -6, 0, -8, -3, -2, 0, -10
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2024

Keywords

Crossrefs

Programs

  • PARI
    A378216(n) = if(1==n,n,2-numdiv(n));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA174725(n/d) * a(d).
For n > 1, a(n) = -A070824(n) = 2-A000005(n).
a(n) = Sum_{d|n} A023900(d) * A033879(n/d) = Sum_{d|n} A378220(d) * A344587(n/d).

A378978 Deficiency of even numbers: a(n) = 4*n - sigma(2*n).

Original entry on oeis.org

1, 1, 0, 1, 2, -4, 4, 1, -3, -2, 8, -12, 10, 0, -12, 1, 14, -19, 16, -10, -12, 4, 20, -28, 7, 6, -12, -8, 26, -48, 28, 1, -12, 10, -4, -51, 34, 12, -12, -26, 38, -56, 40, -4, -54, 16, 44, -60, 25, -17, -12, -2, 50, -64, 4, -24, -12, 22, 56, -120, 58, 24, -60, 1, 8, -72, 64, 2, -12, -56, 68, -115, 70, 30, -72, 4, 20
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2024

Keywords

Crossrefs

Even bisection of A033879.
Topmost row of A378979.
Cf. also A344587, A377879.

Programs

Formula

a(n) = A033879(2*n) = 4*n - A062731(n).
Showing 1-6 of 6 results.