A331180 Number of values of k, 1 <= k <= n, with A323910(k) = A323910(n), where A323910 is Dirichlet inverse of deficiency of n.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 4, 5, 1, 1, 2, 1, 3, 1, 5, 1, 5, 1, 6, 1, 1, 1, 6, 1, 1, 2, 6, 1, 2, 1, 7, 1, 3, 1, 2, 1, 2, 8, 9, 1, 1, 1, 3, 2, 2, 1, 3, 1, 1, 1, 7, 1, 10, 1, 11, 2, 1, 2, 1, 1, 2, 2, 7, 1, 1, 1, 8, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[n_] := 2 n - DivisorSigma[1, n]; A323910[n_] := A323910[n] = If[n == 1, 1, -Sum[f[n/d] A323910[d], {d, Most@Divisors[n]}]]; Module[{b}, b[] = 0; a[n] := With[{t = A323910[n]}, b[t] = b[t] + 1]]; Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d
A033879(n) = (2*n-sigma(n)); v331180 = ordinal_transform(DirInverse(vector(up_to,n,A033879(n)))); A331180(n) = v331180[n];
Comments