cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A331180 Number of values of k, 1 <= k <= n, with A323910(k) = A323910(n), where A323910 is Dirichlet inverse of deficiency of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 4, 5, 1, 1, 2, 1, 3, 1, 5, 1, 5, 1, 6, 1, 1, 1, 6, 1, 1, 2, 6, 1, 2, 1, 7, 1, 3, 1, 2, 1, 2, 8, 9, 1, 1, 1, 3, 2, 2, 1, 3, 1, 1, 1, 7, 1, 10, 1, 11, 2, 1, 2, 1, 1, 2, 2, 7, 1, 1, 1, 8, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A323910.

Crossrefs

Cf. also A331178, A331181.

Programs

  • Mathematica
    f[n_] := 2 n - DivisorSigma[1, n];
    A323910[n_] := A323910[n] = If[n == 1, 1, -Sum[f[n/d] A323910[d], {d, Most@Divisors[n]}]];
    Module[{b}, b[] = 0; a[n] := With[{t = A323910[n]}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n));
    v331180 = ordinal_transform(DirInverse(vector(up_to,n,A033879(n))));
    A331180(n) = v331180[n];

A378533 Dirichlet convolution of A323910 and A378542.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 5, 3, 4, 1, 10, 1, 4, 4, 11, 1, 10, 1, 10, 4, 4, 1, 26, 3, 4, 5, 10, 1, 16, 1, 21, 4, 4, 4, 34, 1, 4, 4, 26, 1, 16, 1, 10, 10, 4, 1, 62, 3, 10, 4, 10, 1, 26, 4, 26, 4, 4, 1, 56, 1, 4, 10, 43, 4, 16, 1, 10, 4, 16, 1, 98, 1, 4, 10, 10, 4, 16, 1, 62, 11, 4, 1, 56, 4, 4, 4, 26, 1, 56, 4, 10, 4, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Inverse Möbius transform of A378531.

Crossrefs

Cf. A378531 (Möbius transform), A378534 (Dirichlet inverse).
Cf. also A378223.

Programs

Formula

a(n) = Sum_{d|n} A323910(d)*A378542(n/d).
a(n) = Sum_{d|n} A378531(d).

A378754 Dirichlet convolution of -A252748 and A323910.

Original entry on oeis.org

1, 0, -1, -2, -1, -2, -3, -10, -10, -2, -1, -10, -3, -6, -5, -38, -1, -22, -3, -10, -11, -2, -5, -42, -14, -6, -60, -22, -1, -14, -5, -130, -5, -2, -11, -76, -3, -6, -11, -42, -1, -30, -3, -10, -36, -10, -5, -158, -46, -30, -5, -22, -5, -144, -5, -78, -11, -2, -1, -58, -5, -10, -64, -422, -11, -14, -3, -10, -17, -30
Offset: 1

Views

Author

Antti Karttunen, Dec 11 2024

Keywords

Crossrefs

Cf. A033879, A252748, A323910, A378755 (Dirichlet inverse).

Programs

Formula

a(n) = Sum_{d|n} -A252748(d)*A323910(n/d).

A379106 Dirichlet convolution of A000120 and A323910, where A323910 is the Dirichlet inverse of the deficiency of n, and A000120 is the binary weight of n.

Original entry on oeis.org

1, 0, 0, 0, -2, 2, -3, 0, -3, 2, -7, 4, -9, 2, 2, 0, -14, 4, -15, 4, -1, 2, -18, 8, -8, 2, -4, 4, -24, 2, -25, 0, -2, 2, 5, 12, -33, 2, 0, 8, -37, 0, -38, 4, 10, 2, -41, 16, -20, 0, 2, 4, -48, 2, 15, 8, 0, 2, -53, 12, -55, 2, 19, 0, 16, -8, -63, 4, -3, -4, -66, 32, -69, 2, -2, 4, 18, -12, -73, 16, -15, 2, -78, 8, 30
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A000120, A033879, A323910, A379107 (Dirichlet inverse).
Cf. also A294898, A378754, A378756.

Programs

Formula

a(n) = Sum_{d|n} A000120(d)*A323910(n/d).

A378654 Abundant numbers k for which A323910(k) = A378643(k).

Original entry on oeis.org

162, 460, 784, 972, 1000, 1584, 1760, 1944, 4136, 4928, 6860, 11128, 30976
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2024

Keywords

Crossrefs

Subsequence of A005101.

Programs

A033879 Deficiency of n, or 2n - (sum of divisors of n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51
Offset: 1

Views

Author

Keywords

Comments

Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007
a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014
If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019
It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - _Omar E. Pol_, Dec 27 2013
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Cf. A000396 (positions of zeros), A005100 (of positive terms), A005101 (of negative terms).
Cf. A141545 (positions of a(n) = -12).
For this sequence applied to various permutations of natural numbers and some other sequences, see A323174, A323244, A324055, A324185, A324546, A324574, A324575, A324654, A325379.

Programs

Formula

a(n) = -A033880(n).
a(n) = A005843(n) - A000203(n). - Omar E. Pol, Dec 14 2008
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
a(n) = A286385(n) - A252748(n). - Antti Karttunen, May 13 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
a(n) = Sum_{d|n} A008683(n/d)*A296075(d).
a(n) = A065620(A295881(n)) = A117966(A295882(n)).
a(n) = A294898(n) + A000120(n).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
a(n) = A325314(n) - A325313(n) = A325814(n) - A034460(n) = A325978(n) - A325977(n).
a(n) = A325976(n) - A325826(n) = A325959(n) - A325969(n) = A003958(n) - A324044(n).
a(n) = A326049(n) - A326050(n) = A326055(n) - A326054(n) = A326044(n) - A326045(n).
a(n) = A326058(n) - A326059(n) = A326068(n) - A326067(n).
a(n) = A326128(n) - A326127(n) = A066503(n) - A326143(n).
a(n) = A318878(n) - A318879(n).
a(A228058(n)) = A325379(n). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023

Extensions

Definition corrected by N. J. A. Sloane, Jul 04 2005

A191161 Hypersigma(n), definition 2: sum of the divisors of n plus the recursive sum of the divisors of the proper divisors.

Original entry on oeis.org

1, 4, 5, 12, 7, 22, 9, 32, 19, 30, 13, 72, 15, 38, 37, 80, 19, 90, 21, 96, 47, 54, 25, 208, 39, 62, 65, 120, 31, 178, 33, 192, 67, 78, 65, 316, 39, 86, 77, 272, 43, 222, 45, 168, 147, 102, 49, 560, 67, 174, 97, 192, 55
Offset: 1

Views

Author

Alonso del Arte, May 26 2011

Keywords

Comments

In wanting to ensure the definition was not arbitrary, I initially thought that 1s had to stop the recursion. But as T. D. Noe showed me, this doesn't have to be the case: the 1s can be included in the recursion.

Crossrefs

Cf. A000203, A191150, A202687, A255242, A378211 (Dirichlet inverse).
Sequences that appear in the convolution formulas: A000010, A000203, A007429, A038040, A060640, A067824, A074206, A174725, A253249, A323910, A323912, A330575.

Programs

  • Mathematica
    hsTD[n_] := hsTD[n] = Module[{d = Divisors[n]}, Total[d] + Total[hsTD /@ Most[d]]]; Table[hsTD[n], {n, 100}] (* From T. D. Noe *)
  • PARI
    a(n)=sumdiv(n,d,if(dCharles R Greathouse IV, Dec 20 2011

Formula

a(n) = sigma(n) + sum_{d | n, d < n} a(d). - Charles R Greathouse IV, Dec 20 2011
From Antti Karttunen, Nov 22 2024: (Start)
Following formulas were conjectured by Sequence Machine:
For n > 1, a(n) = A191150(n) + A074206(n).
a(n) = A330575(n) + A255242(n) = 2*A255242(n) + n = 2*A330575(n) - n.
a(n) = Sum_{d|n} A330575(d).
a(n) = Sum_{d|n} d*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A074206(n/d).
a(n) = Sum_{d|n} A007429(d)*A174725(n/d).
a(n) = Sum_{d|n} A000010(d)*A253249(n/d).
a(n) = Sum_{d|n} A038040(d)*A323912(n/d).
a(n) = Sum_{d|n} A060640(d)*A323910(n/d).
(End)

A346246 Dirichlet inverse of A344587, 2*A003961(n) - sigma(A003961(n)).

Original entry on oeis.org

1, -2, -4, -1, -6, 10, -10, -2, -3, 14, -12, 4, -16, 22, 26, -4, -18, 2, -22, 6, 42, 26, -28, 6, -5, 34, -6, 10, -30, -66, -36, -8, 50, 38, 62, 7, -40, 46, 66, 10, -42, -106, -46, 12, 14, 58, -52, 8, -9, 2, 74, 16, -58, -2, 74, 18, 90, 62, -60, -18, -66, 74, 26, -16, 98, -126, -70, 18, 114, -150, -72, 18, -78, 82, 12, 22
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Comments

Dirichlet inverse of the deficiency of prime shifted n.

Crossrefs

Cf. A000203, A003961, A003973, A323910, A344587, A346247, A346251 (positions of zeros).
Cf. also A346235, A346248, A346254.

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); };
    v346246 = DirInverseCorrect(vector(up_to,n,A344587(n)));
    A346246(n) = v346246[n];

Formula

a(n) = A323910(A003961(n)).
a(n) = A346247(n) - A344587(n).

A346248 Dirichlet inverse of -A252748, 2*n - A003961(n).

Original entry on oeis.org

1, -1, -1, 2, -3, 5, -3, 8, 8, 7, -9, 10, -9, 11, 11, 32, -15, 16, -15, 6, 19, 13, -17, 48, 8, 17, 56, 18, -27, -3, -25, 128, 17, 19, 25, 104, -33, 23, 25, 32, -39, 9, -39, -6, 24, 29, -41, 224, 32, 16, 23, 6, -47, 144, 35, 88, 31, 31, -57, 78, -55, 37, 72, 512, 43, -33, -63, -18, 41, -13, -69, 512, -67, 41, 40, -6, 43
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Comments

Zeros occur at n = 352, 26840, 34816, 3787168, ...

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    v346248 = DirInverseCorrect(vector(up_to,n,(n+n)-A003961(n)));
    A346248(n) = v346248[n];

Formula

a(n) = A346250(n) + A252748(n).

A323911 Sum of deficiency of n (A033879) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 1, 4, 8, 0, -2, 0, 12, 16, 1, 0, -2, 0, 0, 24, 20, 0, -8, 16, 24, 12, 2, 0, -28, 0, 1, 40, 32, 48, -15, 0, 36, 48, -6, 0, -36, 0, 6, 16, 44, 0, -20, 36, 6, 64, 8, 0, -12, 80, -4, 72, 56, 0, -46, 0, 60, 28, 1, 96, -52, 0, 12, 88, -44, 0, -39, 0, 72, 28, 14, 120, -60, 0, -18, 37, 80, 0, -58, 128, 84, 112, 0, 0, -52, 144, 18
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n));
    v323910 = DirInverse(vector(up_to,n,A033879(n)));
    A323910(n) = v323910[n];
    A323911(n) = (A033879(n)+A323910(n));

Formula

a(n) = A033879(n) + A323910(n).
Showing 1-10 of 19 results. Next