cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A323910 Dirichlet inverse of the deficiency of n, A033879.

Original entry on oeis.org

1, -1, -2, 0, -4, 4, -6, 0, -1, 6, -10, 2, -12, 8, 10, 0, -16, 1, -18, 2, 14, 12, -22, 4, -3, 14, -2, 2, -28, -16, -30, 0, 22, 18, 26, 4, -36, 20, 26, 4, -40, -24, -42, 2, 4, 24, -46, 8, -5, -1, 34, 2, -52, 0, 42, 4, 38, 30, -58, 2, -60, 32, 6, 0, 50, -40, -66, 2, 46, -40, -70, 12, -72, 38, 2, 2, 62, -48, -78, 8, -4, 42, -82, -2, 66, 44, 58, 4, -88, 2, 74, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Cf. A033879, A323911, A323912, A359549 (parity of terms).
Sequences that appear in the convolution formulas: A002033, A008683, A023900, A055615, A046692, A067824, A074206, A174725, A191161, A327960, A328722, A330575, A345182, A349341, A346246, A349387.

Programs

  • Mathematica
    b[n_] := 2 n - DivisorSigma[1, n];
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n));
    v323910 = DirInverse(vector(up_to,n,A033879(n)));
    A323910(n) = v323910[n];

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA033879(n/d) * a(d).
From Antti Karttunen, Nov 14 2024: (Start)
Following convolution formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly:
a(n) = Sum_{d|n} A046692(d)*A067824(n/d).
a(n) = Sum_{d|n} A055615(d)*A074206(n/d).
a(n) = Sum_{d|n} A023900(d)*A174725(n/d).
a(n) = Sum_{d|n} A008683(d)*A323912(n/d).
a(n) = Sum_{d|n} A191161(d)*A327960(n/d).
a(n) = Sum_{d|n} A328722(d)*A330575(n/d).
a(n) = Sum_{d|n} A345182(d)*A349341(n/d).
a(n) = Sum_{d|n} A346246(d)*A349387(n/d).
a(n) = Sum_{d|n} A002033(d-1)*A055615(n/d).
(End)

A346250 Sum of -A252748 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 2, 0, -3, 1, 6, 0, -11, 0, 6, 6, -17, 0, -23, 0, -17, 6, 18, 0, -39, 9, 18, -15, -25, 0, -48, 0, -51, 18, 30, 18, -49, 0, 30, 18, -77, 0, -72, 0, -35, -61, 34, 0, -85, 9, -31, 30, -43, 0, -123, 54, -97, 30, 54, 0, -117, 0, 50, -77, -89, 54, -96, 0, -53, 34, -104, 0, -19, 0, 66, -55, -61, 54, -120, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A252748(n) = (A003961(n) - (2*n));
    v346248 = DirInverseCorrect(vector(up_to,n,-A252748(n)));
    A346248(n) = v346248[n];
    A346250(n) = (A346248(n)-A252748(n));

Formula

a(n) = A346248(n) - A252748(n).

A346247 Sum of A344587 (the deficiency of prime shifted n) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 16, 0, 12, 16, 24, 0, 16, 0, 40, 48, 37, 0, 28, 0, 28, 80, 48, 0, 36, 36, 64, 88, 52, 0, -48, 0, 114, 96, 72, 120, 54, 0, 88, 128, 68, 0, -64, 0, 64, 116, 112, 0, 92, 100, 68, 144, 88, 0, 124, 144, 132, 176, 120, 0, -12, 0, 144, 204, 349, 192, -72, 0, 100, 224, -72, 0, 128, 0, 160, 160, 124, 240, -88, 0, 182
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); };
    v346246 = DirInverseCorrect(vector(up_to,n,A344587(n)));
    A346246(n) = v346246[n];
    A346247(n) = (A344587(n)+A346246(n));

Formula

a(n) = A344587(n) + A346246(n).
a(n) = A323911(A003961(n)).

A346478 Sum of A346476 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 2, 0, -3, 1, 6, 0, -11, 0, 6, 6, -5, 0, -23, 0, -29, 6, 18, 0, -3, 9, 18, -15, -37, 0, -60, 0, -9, 18, 30, 18, 23, 0, 30, 18, 1, 0, -84, 0, -83, -61, 34, 0, -13, 9, -67, 30, -91, 0, 45, 54, 5, 30, 54, 0, 75, 0, 50, -77, -5, 54, -184, 0, -137, 34, -176, 0, -13, 0, 66, -55, -145, 54, -188, 0, -37, 49
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA346476(n) = (n+n-A250469(n));
    v346477 = DirInverseCorrect(vector(up_to,n,A346476(n)));
    A346477(n) = v346477[n];
    A346478(n) = (A346476(n)+A346477(n));

Formula

a(n) = A346476(n) + A346477(n).
a(1) = 2; and for n > 2, a(n) = -Sum_{d|n, 1A346476(n/d) * A346477(d).

A323913 Sum of A083254 (2*phi(n) - n) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 6, 0, 0, -4, 0, 0, 10, 0, 0, 0, 9, 0, 5, 0, 0, -16, 0, 0, 18, 0, 30, -4, 0, 0, 22, 0, 0, -24, 0, 0, 11, 0, 0, 0, 25, -12, 30, 0, 0, -18, 54, 0, 34, 0, 0, -24, 0, 0, 21, 0, 66, -40, 0, 0, 42, -32, 0, 0, 0, 0, 9, 0, 90, -48, 0, 0, 19, 0, 0, -40, 90, 0, 54, 0, 0, -38, 110, 0, 58, 0, 102, 0, 0, -20
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA083254(n) = (2*eulerphi(n)-n);
    v323912 = DirInverse(vector(up_to,n,A083254(n)));
    A323912(n) = v323912[n];
    A323913(n) = (A083254(n)+A323912(n));

A324044 a(n) = A003958(n) - A033879(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, -1, 2, 0, 6, 0, 2, 2, 0, 0, 7, 0, 6, 2, 2, 0, 14, -3, 2, -6, 6, 0, 20, 0, 0, 2, 2, 2, 23, 0, 2, 2, 14, 0, 24, 0, 6, 4, 2, 0, 30, -5, 9, 2, 6, 0, 20, 2, 14, 2, 2, 0, 56, 0, 2, 2, 0, 2, 32, 0, 6, 2, 28, 0, 55, 0, 2, 6, 6, 2, 36, 0, 30, -25, 2, 0, 68, 2, 2, 2, 14, 0, 70, 2, 6, 2, 2, 2, 62, 0, 11, -2, 33, 0, 44, 0, 14, 30
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2019

Keywords

Crossrefs

Cf. also A319687, A323911.

Programs

Formula

a(n) = A003958(n) - A033879(n).
Showing 1-6 of 6 results.