cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A337340 a(n) = (A337339(n)-A003961(n)) / 2.

Original entry on oeis.org

0, 1, 4, 16, 9, 49, 25, 169, 144, 100, 36, 484, 64, 38, 289, 1600, 81, 1369, 121, 961, 729, 361, 196, 4489, 576, 625, 3844, 139, 225, 2704, 324, 14641, 1024, 784, 1444, 12544, 400, 1156, 1764, 8836, 441, 6724, 529, 3364, 7569, 1849, 676, 40804, 3600, 5329, 2209, 5776, 841, 34969, 2025, 4262, 3249, 386, 900, 24649, 1089
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Comments

Not all terms are squares. For example, a(14) = 38, a(28) = 139 and a(56) = 4262 are not squares.
Not all terms are nonnegative. The first three negative terms are a(1354) = -290, a(7078) = -1363 and a(15722) = -2386.

Crossrefs

Cf. also A337341.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337340(n) = { my(h=A003961(n),s=(h^2),u=(s+1)/2); ((u/gcd(1+sigma(s), u)) - h)/2; };

A337341 a(n) = A337339(n) - n.

Original entry on oeis.org

0, 3, 10, 37, 20, 107, 54, 357, 304, 211, 74, 1001, 132, 95, 598, 3265, 164, 2795, 246, 1965, 1492, 739, 398, 9089, 1176, 1275, 7786, 349, 452, 5483, 654, 29493, 2080, 1591, 2930, 25277, 804, 2343, 3574, 17821, 884, 13571, 1062, 6801, 15268, 3739, 1358, 81965, 7272, 10755, 4462, 11653, 1688, 70259, 4086, 8765, 6556, 807
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Comments

Superficially, it seems that A000027 offers an lower bound for A337339 as there seems to be no negative terms in this sequence, but of course it is not guaranteed.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337341(n) = { my(h=A003961(n),s=(h^2),u=(s+1)/2); ((u/gcd(1+sigma(s), u)) - n); };

Formula

a(n) = A337339(n) - n.

A336700 Numbers k such that the odd part of (1+k) divides (1 + odd part of sigma(k)).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 2431, 2943, 3775, 4095, 8191, 13311, 14335, 16383, 17407, 21951, 22527, 32767, 34335, 44031, 57855, 65535, 85375, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1562623, 1632255, 2056191, 2097151, 2744319, 4194303, 6815743, 8388607, 8781823, 10059775, 16777215
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2020

Keywords

Comments

Numbers k for which A337194(k) = 1+A161942(k) is a multiple of A000265(1+k).
Conjecture: After 1, all terms are of the form 4u+3 (in A004767). If this could be proved, then it would refute at once the existence of both the odd perfect numbers and the quasiperfect numbers. Concentrating on the latter is probably easier, as it is known that all quasiperfect numbers must be odd squares, thus k is of the form 4u+1, in which case the condition given in A336701 that A000265(1+A000265(sigma(k))) must be equal to A000265(1+k) reduces to a simpler form, A000265(1+sigma(k)) = (1+k)/2, and as k = s^2, with s odd, so (s^2 + 1)/2 should divide 1+sigma(s^2). Does that condition allow any other solutions than s=1 ? See A337339.

Crossrefs

Subsequences: A000225, A336701 (terms where the quotient is a power of 2).

Programs

  • Mathematica
    Block[{f}, f[n_] := n/2^IntegerExponent[n, 2]; Select[Range[2^20], Mod[f[1 + f[DivisorSigma[1, #]]], f[1 + #]] == 0 &] ] (* Michael De Vlieger, Aug 22 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    isA336700(n) = !((1+A000265(sigma(n)))%A000265(1+n));

A337337 a(n) = gcd(1+sigma(s), (s+1)/2), where s is the square of n once prime-shifted (s = A003961(n)^2 = A003961(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Comments

All terms are in A007310, because all terms of A337336 are.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337337(n) = { my(s=(A003961(n)^2)); gcd((s+1)/2, 1+sigma(s)); };
    
  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A336697(n) = { my(s=((n+n-1)^2)); gcd((s+1)/2, 1+sigma(s)); };
    A337337(n) = A336697(A048673(n));

Formula

a(n) = gcd((s+1)/2, 1+sigma(s)), where s = A003961(n)^2 = A003961(n^2).
a(n) = gcd(A048673(n^2), 1+A003973(n^2)).
a(n) = gcd(A048673(n^2), A337194(A003961(n)^2)) = gcd(A337336(n), A336844(n^2)).
a(n) = A336697(A048673(n)).
a(n) = A337335(n^2).

A378231 Deficiency of prime-shifted squares: a(n) = 2*A003961(n^2) - sigma(A003961(n^2)), where A003961 is fully multiplicative function with a(prime(i)) = prime(i+1).

Original entry on oeis.org

1, 5, 19, 41, 41, 47, 109, 365, 469, 141, 155, 299, 271, 449, 683, 3281, 341, 1097, 505, 1041, 1927, 663, 811, 2567, 2001, 1211, 11719, 3509, 929, -921, 1331, 29525, 2777, 1545, 4277, 6749, 1639, 2333, 4933, 9141, 1805, 851, 2161, 5235, 16733, 3815, 2755, 22979, 13177, 6805, 6239, 9671, 3421, 27347, 6131, 31049
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2024

Keywords

Comments

See comments in A377879 and in A337339.

Crossrefs

Programs

Formula

a(n) = A344587(n^2) = A377879(A003961(n)).

A336697 a(n) = gcd((s+1)/2, 1+sigma(s)), where s is the n-th odd square, (2n-1)^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2020

Keywords

Comments

See comments in A336700, A337337, and A337339.

Crossrefs

Programs

  • Mathematica
    Array[GCD[(# + 1)/2, 1 + DivisorSigma[1, #]] &[(2 # - 1)^2] &, 120] (* Michael De Vlieger, Aug 24 2020 *)
  • PARI
    A336697(n) = { my(s=((n+n-1)^2)); gcd((s+1)/2,1+sigma(s)); };

Formula

For all n >= 1, a(A048673(n)) = A337337(n).

A337336 a(n) = A048673(n^2).

Original entry on oeis.org

1, 5, 13, 41, 25, 113, 61, 365, 313, 221, 85, 1013, 145, 545, 613, 3281, 181, 2813, 265, 1985, 1513, 761, 421, 9113, 1201, 1301, 7813, 4901, 481, 5513, 685, 29525, 2113, 1625, 2965, 25313, 841, 2381, 3613, 17861, 925, 13613, 1105, 6845, 15313, 3785, 1405, 82013, 7321, 10805, 4513, 11705, 1741, 70313, 4141, 44105
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Comments

All terms are odd and neither there are multiples of 3, thus only terms of A007310 occur here.

Crossrefs

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A337336(n) = A048673(n^2);

Formula

a(n) = A048673(A000290(n)) = (1+(A003961(n)^2))/2.
For all n>= 1, A010872(a(n)) = A040001(n).

A337338 Numerator of (1+sigma(s)) / ((s+1)/2), where s is the square of n prime-shifted once (s = A003961(n)^2 = A003961(n^2)).

Original entry on oeis.org

2, 14, 32, 122, 58, 404, 134, 1094, 782, 742, 184, 3752, 308, 346, 1768, 9842, 382, 10154, 554, 6898, 4124, 2380, 872, 33884, 2802, 3992, 19532, 1238, 994, 22972, 1408, 88574, 5674, 4954, 7582, 94502, 1724, 7190, 9518, 62302, 1894, 53600, 2258, 22144, 44518, 11324, 2864, 305072, 16106, 36414, 11812, 37148, 3542, 253904
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Crossrefs

Cf. A337339 (denominators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337338(n) = { my(s=(A003961(n)^2),t=1+sigma(s)); (t/gcd(t, (s+1)/2)); };
    \\ Or as:
    A337338(n) = { my(s=A003961(n^2)); numerator((1+sigma(s))/((s+1)/2)); };

Formula

a(n) = A337194(A003961(n)^2) / A337337(n).

A337342 Numbers k such that A048673(k) divides 1+A003973(k).

Original entry on oeis.org

1, 10, 584, 3824, 23008, 5033216
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Comments

Numbers k such that A048673(k) = A337335(k). Equivalently, numbers k such that (A003961(k)+1)/2 divides 1+A003973(k).
No squares larger than one in this sequence => No quasiperfect numbers. See also A337339. For any x corresponding to a quasiperfect number qp = A003961(x), the quotient (1+A003973(x)) / A048673(x) should be 4. Thus that A003961(x) should also be a member of A325311.
At least for the terms x = a(2) .. a(6) here, the quotient (1+A003973(x)) / A048673(x) = 3. The terms for which the quotient is 3 are precisely those which by prime shifting become the terms of A007593 (that are all odd), thus the terms y = A064989(A007593(n)), for n >= 1, form a subsequence of this sequence.
a(7) > 2^28.
Terms 65810851904356352, 30943274395471606363637940224, 40102483616531202199118491418624 are also in the sequence, but their positions are unknown. (Adapted from Jud McCranie's Dec 16 1999 comment in A007593).

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337342(n) = { my(s=A003961(n)); !((1+sigma(s))%((1+s)/2)); };

A348941 a(n) = n / gcd(n, A326042(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 6, 13, 7, 15, 16, 17, 18, 19, 20, 21, 22, 23, 4, 25, 13, 27, 14, 29, 15, 31, 32, 33, 34, 35, 36, 37, 19, 39, 40, 41, 21, 43, 4, 45, 23, 47, 24, 49, 25, 17, 13, 53, 27, 11, 28, 57, 58, 59, 30, 61, 62, 63, 64, 65, 33, 67, 68, 23, 35, 71, 24, 73, 37, 75, 38, 77, 39, 79, 80, 81, 82
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2021

Keywords

Comments

Denominator of ratio A326042(n) / n.
If there are no more 1's in this sequence after the initial one, then there are no odd terms of A336702 (numbers whose abundancy index is a power of 2) larger than one, and neither there are odd terms in A005820 or in A046060. Compare to similar conditions given in A336848, A336849 and A337339.

Crossrefs

Programs

  • Mathematica
    f1[2, e_] := 1; f1[p_, e_] := NextPrime[p, -1]^e; s[n_] := Times @@ f1 @@@ FactorInteger[n]; f[p_, e_] := s[((q = NextPrime[p])^(e + 1) - 1)/(q - 1)]; s2[1] = 1; s2[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := n/GCD[n, s2[n]]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    A348941(n) = (n / gcd(n, A326042(n)));

Formula

a(n) = n / A348940(n) = n / gcd(n, A326042(n)).
Showing 1-10 of 13 results. Next