cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347122 Möbius transform of A347121.

Original entry on oeis.org

-1, 2, 3, 10, 3, 24, 5, 38, 29, 36, 3, 90, 5, 56, 61, 130, 3, 152, 5, 138, 95, 72, 7, 306, 57, 92, 187, 214, 3, 292, 7, 422, 121, 108, 139, 550, 5, 128, 155, 474, 3, 452, 5, 282, 403, 160, 7, 990, 145, 348, 181, 358, 7, 856, 173, 734, 215, 180, 3, 1046, 7, 208, 625, 1330, 223, 604, 5, 426, 269, 700, 3, 1838, 7, 236
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347121(n) = (sumdiv(n,d,d*A003961(n/d))-(2*n));
    A347122(n) = sumdiv(n,d,moebius(n/d)*A347121(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A347121(d).
a(n) = A347137(n) - 2*A000010(n).
For all n >= 1, a(A000040(n)) = 1 + A001223(n).

A347136 a(n) = Sum_{d|n} d * A003961(n/d), where A003961 shifts the prime factorization of its argument one step towards larger primes.

Original entry on oeis.org

1, 5, 8, 19, 12, 40, 18, 65, 49, 60, 24, 152, 30, 90, 96, 211, 36, 245, 42, 228, 144, 120, 52, 520, 109, 150, 272, 342, 60, 480, 68, 665, 192, 180, 216, 931, 78, 210, 240, 780, 84, 720, 90, 456, 588, 260, 100, 1688, 247, 545, 288, 570, 112, 1360, 288, 1170, 336, 300, 120, 1824, 128, 340, 882, 2059, 360, 960, 138
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of the identity function (A000027) with the prime shifted identity (A003961). Multiplicative because both A000027 and A003961 are.
Dirichlet convolution of Euler phi (A000010) with the prime shifted sigma (A003973).
Dirichlet convolution of sigma (A000203) with the prime shifted phi (A003972).
Inverse Möbius transform of A347137.

Crossrefs

Cf. A003961, A003972, A003973, A151800, A347121, A347137 (Möbius transform).

Programs

  • Mathematica
    f[p_, e_] := ((np = NextPrime[p])^(e + 1) - p^(e + 1))/(np - p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347136(n) = sumdiv(n,d,d*A003961(n/d));

Formula

a(n) = Sum_{d|n} d * A003961(n/d).
a(n) = Sum_{d|n} A000010(n/d) * A003973(d).
a(n) = Sum_{d|n} A000203(n/d) * A003972(d).
a(n) = Sum_{d|n} A347137(d).
For all primes p, a(p) = p + A003961(p).
a(n) = A347121(n) + 2*n.
Multiplicative with a(p^e) = (A151800(p)^(e+1) - p^(e+1))/(A151800(p)-p). - Amiram Eldar, Aug 24 2021
Showing 1-2 of 2 results.