cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347137 a(n) = Sum_{d|n} phi(d) * A003961(n/d), where A003961 shifts the prime factorization of its argument one step towards larger primes, and phi is Euler totient function.

Original entry on oeis.org

1, 4, 7, 14, 11, 28, 17, 46, 41, 44, 23, 98, 29, 68, 77, 146, 35, 164, 41, 154, 119, 92, 51, 322, 97, 116, 223, 238, 59, 308, 67, 454, 161, 140, 187, 574, 77, 164, 203, 506, 83, 476, 89, 322, 451, 204, 99, 1022, 229, 388, 245, 406, 111, 892, 253, 782, 287, 236, 119, 1078, 127, 268, 697, 1394, 319, 644, 137, 490
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with the prime shift function (A003961). Multiplicative because both A000010 and A003961 are.
Dirichlet convolution of the identity function (A000027) with the prime shifted phi (A003972).
Möbius transform of A347136.

Crossrefs

Cf. A000010, A000027, A000040, A001043, A003961, A003972, A008683, A151800, A347122, A347136 (inverse Möbius transform).
Cf. also A018804, A347237.

Programs

  • Mathematica
    f[p_, e_] := (q = NextPrime[p])^e + (p - 1)*(q^e - p^e)/(q - p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347137(n) = sumdiv(n,d,eulerphi(n/d)*A003961(d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A003961(d).
a(n) = Sum_{d|n} d * A003972(n/d).
a(n) = Sum_{d|n} A008683(n/d) * A347136(d).
a(n) = A347122(n) + 2*A000010(n).
a(A000040(n)) = A001043(n) - 1.
Multiplicative with a(p^e) = q(p)^e + (p-1)*(q(p)^e - p^e)/(q(p) - p), where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Sep 16 2023

A347121 a(n) = A347136(n) - 2*n.

Original entry on oeis.org

-1, 1, 2, 11, 2, 28, 4, 49, 31, 40, 2, 128, 4, 62, 66, 179, 2, 209, 4, 188, 102, 76, 6, 472, 59, 98, 218, 286, 2, 420, 6, 601, 126, 112, 146, 859, 4, 134, 162, 700, 2, 636, 4, 368, 498, 168, 6, 1592, 149, 445, 186, 466, 6, 1252, 178, 1058, 222, 184, 2, 1704, 6, 216, 756, 1931, 230, 828, 4, 548, 278, 940, 2, 3041, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Crossrefs

Cf. A000040, A001223, A003961, A347136, A347122 (Möbius transform).
Cf. also A341512, A346239, A347236.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347121(n) = (sumdiv(n,d,d*A003961(n/d))-(2*n));

Formula

a(n) = A347136(n) - 2*n.
a(A000040(n)) = A001223(n).
Showing 1-2 of 2 results.