cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A332225 Numbers k > 1 for which A048675(A332223(k)) is equal to 2*A048675(k).

Original entry on oeis.org

4, 9, 12, 20, 44, 52, 60, 108, 124, 125, 132, 140, 156, 172, 188, 204, 236, 300, 308, 396, 412, 436, 476, 492, 612, 644, 700, 836, 876, 884, 891, 924, 972, 980, 1004, 1044, 1092, 1100, 1116, 1148, 1188, 1196, 1236, 1260, 1268, 1292, 1300, 1308, 1372, 1380, 1476, 1620, 1628, 1724, 1860, 1900, 2140, 2244, 2324, 2356, 2444, 2460, 2652, 2660, 2700
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Comments

Numbers k > 1 such that A332224(A156552(k)) = A087808(sigma(A156552(k))) is equal to 2*A048675(k) = A048675(k^2).
Notably, of the first 150 terms (4 .. 9996), 156 = 2^2 * 3 * 13 is the only even term that does not map to a prime, as A156552(156) = 267 = 3*89 (and sigma(267) = 360 = 4*90).
Although sigma(A156552(k)) = A323243(k) is a multiple of 4 for most of the terms k present in this sequence, there are exceptions, for example 840350 = A005940(1+A332445(1)) = 2^1 * 5^2 * 7^5 is one, as A048675(A332223(840350)) = 98 = 2*A048675(840350) and A323243(840350) = 2394 == 2 (mod 4).

Crossrefs

Programs

  • PARI
    for(n=2,2048,if(A048675(A332223(n))==2*A048675(n),print1(n,", ")))
    
  • PARI
    \\ To find all terms < 10000:
    v156552sigs = readvec("a156552.txt"); \\ Use the factorization file for A156552 prepared by Hans Havermann, available at https://oeis.org/A156552/a156552.txt
    A323243(n) = if(n<=2,n-1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,((ps[i]^(1+es[i]))-1)/(ps[i]-1)));
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A087808(n) = if(n<1, 0, if(n%2==0, 2*A087808(n/2), A087808((n-1)/2)+1));
    isA322225(n) = (A087808(A323243(n)) == 2*A048675(n));
    for(n=2,10000,if(isA322225(n),print1(n,", ")));

A332463 Möbius transform of A332223.

Original entry on oeis.org

1, 1, 3, 3, 7, 4, 15, 2, 21, 9, 31, 13, 63, 4, 10, 42, 127, -3, 255, 14, 21, 88, 511, 22, 117, 320, 24, 97, 1023, -22, 2047, -36, 190, 1444, 82, 34, 4095, -200, 120, 306, 8191, 14, 16383, -59, 13, 4180, 32767, 30, 609, -103, 15494, -303, 65535, 30, 141, -32, -6, 8920, 131071, 132, 262143, 506030, 564, 834, 658, -149
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A332223(d).

A353363 Numbers k such that A046523(A332223(A332223(k))) is equal to A046523(A332223(k)).

Original entry on oeis.org

1, 2, 6, 25, 38, 155, 235, 294, 322, 365, 390, 465, 528, 638, 646, 744, 765, 768, 867, 884, 924, 946, 1152, 1172, 1290, 1421, 1600, 1653, 1675, 1677, 1729, 1785, 1980, 1989, 2002, 2028
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2022

Keywords

Comments

Numbers k such that A332223(k) is in A353308.
If there existed any 3-perfect number (A005820) of the form x = 4u+2 and not divisible by 3, then x would be also included in A353365 and A005940(1+x) would be included in this sequence. See comments in A353365.

Crossrefs

A353308 Numbers k for which A046523(A332223(k)) is equal to A046523(k).

Original entry on oeis.org

1, 2, 9, 14, 15, 38, 39, 57, 68, 70, 92, 106, 110, 111, 125, 129, 130, 156, 170, 183, 190, 213, 230, 242, 245, 267, 275, 338, 350, 380, 393, 416, 441, 455, 494, 518, 522, 532, 572, 579, 585, 590, 595, 627, 638, 646, 650, 682, 686, 722, 740, 754, 782, 790, 850, 855, 879, 902, 946, 950, 957, 969, 994, 1090, 1118, 1227
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2022

Keywords

Comments

Numbers k such that A348717(A332223(k)) = A348717(k) form a subsequence of this sequence. As its subsequence, we further have sequences A005940(1+A336702(n)) and A005940(1+A027687(n)), computed for n >= 1, and sorted into ascending order.

Crossrefs

Cf. A324201 (subsequence), A353363.
Cf. also A019278, A323653.

A326042 a(n) = A064989(sigma(A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, and A064989 shifts it back towards smaller primes.

Original entry on oeis.org

1, 1, 2, 11, 1, 2, 2, 3, 29, 1, 5, 22, 4, 2, 2, 49, 3, 29, 2, 11, 4, 5, 6, 6, 34, 4, 22, 22, 1, 2, 17, 55, 10, 3, 2, 319, 10, 2, 8, 3, 7, 4, 2, 55, 29, 6, 8, 98, 85, 34, 6, 44, 6, 22, 5, 6, 4, 1, 29, 22, 13, 17, 58, 1091, 4, 10, 4, 33, 12, 2, 31, 87, 3, 10, 68, 22, 10, 8, 10, 49, 469, 7, 12, 44, 3, 2, 2, 15, 25, 29, 8, 66, 34, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2019

Keywords

Comments

For any other number n than those in A326182 we have a(n) < A003961(n).
Fixed points k (for which a(k) = k) satisfy A003973(k) = 2^e * A003961(k) for some exponent e >= 0. Applying A003961 to such numbers gives the odd terms in A336702, of which there are likely to be just a single instance, its initial 1. (Clarified Nov 07 2021).
Conjecture: There are no other fixed points than a(1) = 1. If true, then there are no odd perfect numbers. This condition is equivalent to the condition that if A161942 has no fixed points larger than one, then there are no odd perfect numbers. This follows as whenever k is a fixed point, that is, a(k) = k, then we should also have A003961(a(k)) = A003961(A064989(sigma(A003961(k)))) = A161942(A003961(k)) = A003961(k). Note that A003961 is an injective and surjective mapping from natural numbers to odd numbers, A064989 is its (left) inverse, and composition A003961(A064989(n)) is equivalent to A000265(n).
From Antti Karttunen, Aug 05 2020: (Start)
For any hypothetical odd perfect number x, we would have A003973(k) = 2 * A003961(k), with k = A064989(x) and x = A003961(k). Thus we would have a(k) = A064989(sigma(A003961(k))) = A064989(sigma(x)) = A064989(2*x) = A064989(x) = k. On the other hand, A003973(k) = sigma(A003961(k)) < A003961(A003961(k)) [see A286385 for the reason why], so a necessary condition for this is that x should be one of the terms of A246282. (Clarified Dec 01 2020).
(End)

Crossrefs

Cf. A000037, A000203, A000265, A000593, A003961, A003973, A064989, A161942, A162284, A246282, A286385, A326041, A326182, A336702 (numbers whose abundancy index is a power of 2).
Cf. A348736 [n - a(n)], A348738 [a(n) < n], A348739 [a(n) > n], A348750 [= A064989(a(A003961(n)))], A348940 [gcd(n,a(n))], A348941, A348942, A351456, A353767, A353790, A353794.
Cf. also A332223 for another conjugation of sigma.

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; a1[1] = 1; a1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := a2[DivisorSigma[1, a1[n]]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));

Formula

a(n) = A064989(A003973(n)) = A064989(sigma(A003961(n))).
For k in A000037, a(k) = A064989(A003973(k)/2) = A064989((1/2)*sigma(A003961(k))).
Multiplicative with a(p^e) = A064989((q^(e+1)-1)/(q-1)), where q = nextPrime(p). - Antti Karttunen, Nov 05 2021
a(n) = A353790(n) / A353767(n) = A353794(n) / A351456(n). - Antti Karttunen, May 13 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 05 2021

A332449 a(n) = A005940(1+(3*A156552(n))).

Original entry on oeis.org

1, 4, 9, 10, 25, 16, 49, 30, 21, 36, 121, 22, 169, 100, 81, 90, 289, 40, 361, 250, 225, 196, 529, 66, 55, 484, 105, 490, 841, 64, 961, 270, 441, 676, 625, 154, 1369, 1156, 1089, 750, 1681, 144, 1849, 1210, 39, 1444, 2209, 198, 91, 84, 1521, 1690, 2809, 120, 1225, 1470, 2601, 2116, 3481, 34, 3721, 3364, 1029, 810, 3025, 400
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2020

Keywords

Crossrefs

Cf. A329609 (terms sorted into ascending order).
Cf. A000290, A003961, A005117 (positions of squares), A005940, A010052, A156552, A277010, A329603, A332450, A332451, A347119, A347120, A353267 [= A348717(a(n))], A353269, A353270 [= gcd(n, a(n))], A353271, A353272, A353273.
Cf. also A332223.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332449(n) = A005940(1+(3*A156552(n)));

Formula

a(n) = A005940(1+(3*A156552(n))).
a(p) = p^2 for all primes p.
a(u) = A332451(u) and A010052(a(u)) = 1 for all squarefree numbers (A005117).
a(A003961(n)) = A003961(a(n)) = A005940(1+(6*A156552(n))).
From Antti Karttunen, Apr 10 2022: (Start)
a(n) = A347119(n) * A000290(A347120(n)) = A353270(n) * A353272(n).
a(A353269(n)) = 1 for all n.
(End)

A336701 Numbers k for which A000265(1+A000265(sigma(k))) is equal to A000265(1+k).

Original entry on oeis.org

1, 3, 7, 15, 31, 127, 1023, 8191, 34335, 57855, 131071, 524287, 2147483647
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2020

Keywords

Comments

Numbers k such that A336698(k) [= A000265(1+A161942(k))] is equal to A000265(1+k).
Numbers k such that A337194(k) = 2^e * A000265(1+k), for some e >= 1, where that e = A337195(k).
Any odd perfect number would trivially satisfy this condition.
Also, all hypothetical quasiperfect numbers, numbers k that satisfy sigma(k) = 2k+1, would be members.
Question: Is A066175 a subsequence of this sequence?
From Antti Karttunen, Aug 23 2020: (Start)
Numbers k such that (1+k) = 2^e * A336698(k), for some e >= 0.
Thus numbers k such that for some e >= 0, (1+k) = 2^(e-A337195(k)) * A337194(k), or equally, that A337194(k) = 2^(A337195(k)-e) * (1+k).
Conjecture: There are no even terms. This is equivalent to claim that there are no k such that A336698(k) = 1+k: If we assume that k is even, then in above equations we set e=0, and the requirement will then become that A337194(k) = 2^A337195(k)*(1+k), thus 1+k = A336698(k) = A000265(1+A000265(sigma(k))).
(End)

Crossrefs

Subsequence of A336700.
Cf. A000668 (a subsequence).
See also comments in A326042, A332223.

Programs

  • Mathematica
    Block[{f}, f[n_] := n/2^IntegerExponent[n, 2]; Select[Range[2^20], f[1 + f[DivisorSigma[1, #]]] == f[1 + #] &] ] (* Michael De Vlieger, Aug 22 2020 *)
  • PARI
    A000265(n)  = (n>>valuation(n,2));
    isA336701(n) = (A000265(1+A000265(sigma(n))) == A000265(1+n));

A348742 Odd numbers k for which A161942(k) >= k, where A161942 is the odd part of sigma.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2205, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 9801, 10201, 10609, 11025, 11449, 11881, 12321
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

All odd squares (A016754) are present, but not all terms are squares. A348743 gives the nonsquare terms.
Odd terms of A336702 form a subsequence. Also all odd terms of A005820 would be present here, as well as any hypothetical quasi-perfect numbers (see comments and references in A332223, A336700), both in A016754. - Antti Karttunen, Nov 28 2024

Crossrefs

Union of A016754 and A348743.
Cf. A161942, A162284 (subsequence), A336702, A348741 (complement among the odd numbers).

Programs

  • Maple
    q:= n-> (t-> is(t/2^padic[ordp](t,2)>=n))(numtheory[sigma](n)):
    select(q, [2*i-1$i=1..10000])[];  # Alois P. Heinz, Nov 28 2024
  • Mathematica
    odd[n_] := n/2^IntegerExponent[n, 2]; Select[Range[1, 10^4, 2], odd[DivisorSigma[1, #]] >= # &] (* Amiram Eldar, Nov 02 2021, edited (because of the changed definition) by Antti Karttunen, Nov 28 2024 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    isA348742(n) = ((n%2)&&A000265(sigma(n))>=n); \\ revised by Antti Karttunen, Nov 28 2024

Extensions

a(1) = 1 inserted as the initial term, because of the changed definition (from > to >=) - Antti Karttunen, Nov 28 2024

A332222 a(n) = A156552(sigma(A005940(1+n))).

Original entry on oeis.org

0, 2, 3, 8, 5, 11, 32, 10, 7, 13, 23, 35, 1024, 66, 39, 1024, 11, 23, 31, 37, 47, 55, 133, 43, 258, 2050, 4099, 72, 267, 87, 48, 38, 17, 27, 47, 71, 55, 95, 263, 45, 95, 111, 191, 151, 8199, 269, 175, 4099, 264, 518, 1035, 2056, 1037, 8203, 2080, 138, 207, 539, 1071, 167, 1048592, 98, 291, 1073741824, 13, 37, 71, 75, 75, 111
Offset: 0

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ DivisorSigma[1, #]]] &@ Block[{p = Partition[Split[Join[IntegerDigits[#, 2], {2}]], 2], q}, Times @@ Flatten[Table[q = Take[p, -i]; Prime[Count[Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}]]] &, 70, 0] (* Michael De Vlieger, Feb 12 2020, after Robert G. Wilson v at A005940 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332222(n) = A156552(sigma(A005940(1+n)));

Formula

a(n) = A156552(A000203(A005940(1+n))).
a(n) = A332221(A005940(1+n)) = A156552(A324054(n)).

A387423 The length of binary expansion of n minus the length of the maximal common prefix of the binary expansions of n and sigma(n), where sigma is the sum of divisors function.

Original entry on oeis.org

0, 1, 1, 2, 2, 0, 2, 3, 3, 2, 3, 2, 2, 2, 2, 4, 2, 1, 3, 1, 3, 3, 4, 3, 3, 4, 4, 0, 2, 4, 4, 5, 5, 5, 5, 4, 2, 5, 5, 3, 2, 5, 3, 3, 4, 4, 5, 4, 4, 5, 5, 3, 2, 4, 5, 3, 5, 5, 3, 5, 2, 4, 4, 6, 5, 4, 3, 6, 6, 4, 4, 6, 2, 6, 6, 4, 6, 5, 5, 4, 6, 6, 3, 6, 6, 5, 6, 2, 2, 6, 6, 4, 5, 5, 6, 5, 2, 6, 6, 4, 2, 4, 4, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Positions of 0's in this sequence is given by such numbers n that sigma(n) = 2^k * n + r, for some n >= 1, k >= 0, 0 <= r < 2^k. These would include also quasi-perfect numbers and their generalizations, numbers n such that sigma(n) = 2^k * n + 2^k - 1, for some n > 1, k > 0 (see comments in A332223), if such numbers exist. However, it is conjectured that there are no other zeros than those given by A336702.

Crossrefs

Cf. A000203, A000523, A332223, A336700, A336701, A336702 (conjectured positions of 0's), A387422.
Cf. also A347381, A387413.

Programs

  • PARI
    A387423(n) = { my(a=binary(n), b=binary(sigma(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(#a-(i-1))); i++); (0); };

Formula

a(n) = (1+A000523(n)) - A387422(n).
Showing 1-10 of 11 results. Next