cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A332223 a(1) = 1, and for n > 1, a(n) = A005940(1+sigma(A156552(n))).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 16, 7, 25, 18, 32, 25, 64, 21, 21, 49, 128, 27, 256, 35, 40, 121, 512, 49, 125, 385, 49, 121, 1024, 13, 2048, 13, 225, 1573, 105, 77, 4096, 57, 187, 343, 8192, 63, 16384, 65, 55, 4693, 32768, 121, 625, 32, 15625, 85, 65536, 81, 180, 91, 253, 9945, 131072, 175, 262144, 508079, 625, 847, 729, 169, 524288, 2057, 2601, 105, 1048576
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Comments

From Antti Karttunen, Jul 31 - Aug 06 2020: (Start)
As a curiosity, like with sigma, also here a(14) = a(15). [Cf. also A003973 and A341512]
Question: is it possible that a(k) = 2*k for any k? If not, then the deficiency (A033879) cannot be -1, and there are no quasiperfect numbers. If there were such cases, then A156552(k) = q would be an instance of quasiperfect number, which should also be an odd square, thus k would need to be of the form 4u+2.
In range n <= 10000, a(n) is a nontrivial multiple of n only at n = [25, 35, 343, 539, 847, 3315] with a(n) = [125, 105, 2401, 2695, 2541, 9945]. The quotients are thus also odd: 5, 3, 7, 5, 3, 3.
This rather meager empirical evidence motivates a conjecture that no quotient a(n)/n may be an even integer, and particularly, never a power of 2 larger than one, which (when translated back to the ordinary, unconjugated sigma) claims that it is not possible that sigma(n) = 2^k * n + 2^k - 1, for any n > 1, k > 0. See also A336700 and A336701, where this leads to a rather surprising empirical observation.
(End)

Crossrefs

Cf. A003961, A332449, A332450, A332451, A332460 (for other functions similarly conjugated).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332223(n) = if(1==n,n,A005940(1+sigma(A156552(n))));
    
  • PARI
    A332223(n) = if(1==n,n,A005940(1+sumdiv(A156552(n),d,d))); \\ Antti Karttunen, Aug 04 2020

Formula

For n > 1, a(n) = A005940(1+A000203(A156552(n))) = A005940(1+A323243(n)).
a(A324201(n)) = A003961(A324201(n)). [It's an open problem whether A324201 gives all such solutions]
For n > 1, a(n) = A005940(1 + (Sum_{d|A156552(n)} d)). - Antti Karttunen, Aug 04 2020

A332224 a(n) = A087808(sigma(n)).

Original entry on oeis.org

1, 2, 4, 3, 4, 8, 8, 4, 5, 10, 8, 12, 6, 16, 16, 5, 10, 7, 12, 14, 32, 20, 16, 16, 5, 14, 24, 24, 8, 40, 32, 6, 32, 12, 32, 10, 12, 16, 24, 18, 14, 64, 16, 28, 14, 40, 32, 20, 13, 11, 40, 34, 12, 32, 40, 32, 48, 18, 16, 56, 10, 64, 40, 7, 28, 80, 36, 12, 64, 80, 40, 34, 22, 26, 20, 40, 64, 56, 48, 22, 17, 12, 28, 96, 24, 68, 32, 36, 18
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Crossrefs

Cf. also A324293.

Programs

  • Mathematica
    Block[{s = DivisorSigma[1, Range[90]], t}, t = Nest[Append[#1, If[EvenQ[#2], 2 #1[[#2/2 + 1]], #1[[(#2 - 1)/2 + 1]] + 1]] & @@ {#, Length@ #} &, {0}, Max@ s]; t[[Most@ s + 1]] ] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    A087808(n) = if(n<1, 0, if(n%2==0, 2*A087808(n/2), A087808((n-1)/2)+1));
    A332224(n) = A087808(sigma(n));

Formula

a(n) = A087808(A000203(n)).

A332445 Numbers k of the form 4m+1 for which A087808(sigma(k)) is equal to 2*A087808(k).

Original entry on oeis.org

2009, 19377, 37809, 59373, 74673, 115677, 270041, 310329, 354609, 357309, 720425, 732321, 841437, 2071737, 2612269, 3131149, 3866461, 3930929, 5172093, 5593981, 7118753, 7903961, 8224173, 9327393, 9438129, 11452321, 12708025, 18857209, 18861889, 18875313, 19110321, 20278269, 20709225, 20950061, 23963597, 24895153
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2020

Keywords

Comments

Numbers k such that A332224(k) is equal to A087808(2*k) and k == 1 mod 4.
Notably, the only square among the first 299 terms is a(248) = 5808421369 = 76213^2. sigma(5808421369) = 5808497583 == 3 (mod 4) == 7 (mod 8). Of the remaining 298 terms < 2^33, 92 are such that sigma(k) == 6 (mod 8) and 206 are such that sigma(k) == 2 (mod 8), that is, are terms of A332227.
Question: Why the terms come in clusters? Compare also the scatterplots of A087808 and A332224, and a similar sequence A332465.

Crossrefs

Intersection of A016813 and A332446.
Cf. also A228058, A332227, A332465.

Programs

A332443 Numbers k such that A332224(k) = A087808(sigma(k)) is odd.

Original entry on oeis.org

1, 4, 9, 16, 18, 25, 49, 50, 64, 81, 100, 121, 169, 200, 256, 338, 361, 392, 400, 441, 450, 529, 578, 625, 648, 676, 722, 729, 784, 800, 841, 900, 961, 1024, 1089, 1156, 1225, 1250, 1296, 1352, 1369, 1568, 1600, 1682, 1800, 1849, 2025, 2116, 2209, 2312, 2401, 2450, 2592, 2601, 2704, 2738, 3042, 3136, 3200, 3249, 3362, 3364, 3481, 3600
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2020

Keywords

Comments

Numbers k such that A332224(k) is odd, or equally, that A332448(k) is zero.

Crossrefs

Subsequence of A028982. Positions of zeros in A332448.

Programs

A332229 Even numbers k such that A156552(k) is not a power of prime, and for which A323243(k) = sigma(A156552(k)) is congruent to 2 modulo 8.

Original entry on oeis.org

290, 434, 550, 826, 858, 1394, 1798, 2254, 2418, 2546, 2950, 3094, 3910, 4150, 4382, 4930, 5590, 6138, 6358, 6390, 6710, 6966, 7514, 7546, 7622, 7658, 7990, 8550, 8798, 8906, 9230
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2020

Keywords

Comments

Numbers k for which A156552(k) is in A332228.
Sequence A005940(1+A332228(n)), n >= 1, sorted into ascending order.

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    isA332228(n) = ((n%2)&&!isprimepower(n)&&2==(sigma(n)%8));
    isA332229(n) = isA332228(A156552(n));
    
  • PARI
    v156552sigs = readvec("a156552.txt"); \\ Factorization file for A156552 prepared by Hans Havermann, available at https://oeis.org/A156552/a156552.txt
    isA156552not_a_primepower(n) = if(n<=2,0,my(prsig=v156552sigs[n]); length(prsig[1])>1);
    A323243(n) = if(n<=2,n-1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,((ps[i]^(1+es[i]))-1)/(ps[i]-1)));
    isA332229(n) = (!(n%2)&&isA156552not_a_primepower(n)&&(2==(A323243(n)%8)));
    k=0; for(n=1,10000,if(isA332229(n),k++; print1(n,", ")));

A332444 Numbers k that are squares or twice-squares, but for which A087808(sigma(k)) is even.

Original entry on oeis.org

2, 8, 32, 36, 72, 98, 128, 144, 162, 196, 225, 242, 288, 289, 324, 484, 512, 576, 882, 968, 1058, 1152, 1444, 1458, 1521, 1681, 1764, 1922, 1936, 2048, 2178, 2304, 2500, 2809, 2888, 2916, 3025, 3528, 3698, 3872, 4418, 4608, 4802, 5000, 5329, 5776, 5832, 6498, 7056, 7396, 7569, 7688, 7744, 7921, 7938, 8192, 8281
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2020

Keywords

Comments

Numbers k for which A000203(k) is odd and A332224(k) is even.

Crossrefs

Setwise difference of A028982 \ A332443.

Programs

  • PARI
    A087808(n) = if(n<1, 0, if(n%2==0, 2*A087808(n/2), A087808((n-1)/2)+1));
    isA332444(n) = (((!(n%2)&&issquare(n/2))||issquare(n)) && !(A087808(sigma(n))%2));
    A332444list(u) = { my(v1=vector(2*u,n,2*(n^2)), v2=vector(sqrtint(v1[#v1]),n,n^2)); select(isA332444,Vec(setunion(v1,v2))); };
    v332444 = A332444list(12000);
    A332444(n) = v332444[n];
Showing 1-6 of 6 results.