cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A342671 a(n) = gcd(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 3, 1, 15, 1, 3, 5, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 3, 1, 21, 1, 3, 1, 1, 7, 3, 1, 9, 1, 3, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 5, 9, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 13, 7, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A349756, A350071 [= a(n^2)], A355828 (Dirichlet inverse).
Cf. A349169, A349745, A355833, A355924 (applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));

Formula

a(n) = gcd(A000203(n), A003961(n)).
a(n) = gcd(A000203(n), A286385(n)) = gcd(A003961(n), A286385(n)).
a(n) = A341529(n) / A342672(n).
From Antti Karttunen, Jul 21 2022: (Start)
a(n) = A003961(n) / A349161(n).
a(n) = A000203(n) / A349162(n).
a(n) = A161942(n) / A348992(n).
a(n) = A003961(A349163(n)) = A003961(n/A349164(n)).
(End)

A336702 Numbers whose abundancy index is a power of 2.

Original entry on oeis.org

1, 6, 28, 496, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392, 2305843008139952128
Offset: 1

Views

Author

Antti Karttunen, Aug 05 2020

Keywords

Comments

Apart from missing 2, this sequence gives all numbers k such that the binary expansion of A156552(k) is a prefix of that of A156552(sigma(k)), that is, for k > 1, numbers k for which sigma(k) is a descendant of k in A005940-tree. This follows because of the two transitions x -> A005843(x) (doubling) and x -> A003961(x) (prime shift) used to generate descendants in A005940-tree, using A003961 at any step of the process will ruin the chances of encountering sigma(k) anywhere further down that subtree.
Proof: Any left child in A005940 (i.e., A003961(k) for k) is larger than sigma(k), for any k > 2 [see A286385 for a proof], and A003961(n) > n for all n > 1. Thus, apart from A003961(2) = 3 = sigma(2), A003961^t(k) > sigma(k), where A003961^t means t-fold application of prime shift, here with t >= 1. On the other hand, sigma(2n) > sigma(n) for all n, thus taking first some doubling steps before a run of one or more prime shift steps will not rescue us, as neither will taking further doubling steps after a bout of prime shifts.
The first terms of A325637 not included in this sequence are 154345556085770649600 and 9186050031556349952000, as they have abundancy index 6.
From Antti Karttunen, Nov 29 2021: (Start)
Odd terms of this sequence are given by the intersection of A349169 and A349174.
A064989 applied to the odd terms of this sequence gives the fixed points of A326042, i.e., the positions of zeros in A348736, and a subset of the positions of ones in A348941.
Odd terms of this sequence form a subsequence of A348943, but should occur neither in A348748 nor in A348749.
(End)

Examples

			For 30240, sigma(30240) = 120960 = 4*30240, therefore, as sigma(k)/k = 2^2, a power of two, 30240 is present.
		

Crossrefs

Cf. A000396, A027687 (subsequences).
Subsequence of A007691, and after 1, also subsequence of A325637.
Union with {2} gives the positions of zeros in A347381.

Programs

  • PARI
    isA336702(n) = { my(r=sigma(n)/n); (1==denominator(r)&&!bitand(r, r-1)); }; \\ (Corrected) - Antti Karttunen, Aug 31 2021

A104210 Positive integers divisible by at least 2 consecutive primes.

Original entry on oeis.org

6, 12, 15, 18, 24, 30, 35, 36, 42, 45, 48, 54, 60, 66, 70, 72, 75, 77, 78, 84, 90, 96, 102, 105, 108, 114, 120, 126, 132, 135, 138, 140, 143, 144, 150, 154, 156, 162, 165, 168, 174, 175, 180, 186, 192, 195, 198, 204, 210, 216, 221, 222, 225, 228, 231, 234, 240
Offset: 1

Views

Author

Leroy Quet, Mar 13 2005

Keywords

Comments

If a perfect square is in this sequence, then so is its square root (e.g., 144 and 12). - Alonso del Arte, May 07 2012
The numbers of terms not exceeding 10^k, for k=1,2,..., are 1, 22, 242, 2456, 24632, 246414, 2464272, 24643281, 246433426, ... Apparently, the asymptotic density of this sequence is 0.24643... - Amiram Eldar, Apr 10 2021

Examples

			35 is divisible by both 5 and 7, and 5 and 7 are consecutive primes.
77 is divisible by both 7 and 11, and 7 and 11 are consecutive primes.
110 is not in the sequence because, although it is divisible by 2, 5 and 11, it is not divisible by 3 or 7.
		

Crossrefs

Cf. A003961, A296210 (characteristic function), A319630 (complement), A379230 [= A252748(a(n))].
Positions of terms larger than 1 in A300820 and in A322361.
Subsequences: A006094, A349169 (conjectured, after its initial 1), A349176, A355527 (squarefree terms), A372566, A378884, A379232.

Programs

  • Maple
    N:= 1000: # for terms <= N
    R:= {}:
    p:= 2:
    do
      q:= p; p:= nextprime(p);
      if p*q > N then break fi;
      R:= R union {seq(i,i=p*q..N,p*q)}
    od:
    sort(convert(R,list)); # Robert Israel, Apr 13 2020
  • Mathematica
    fQ[n_] := Block[{lst = PrimePi /@ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]}, Count[ Drop[lst, 1] - Drop[lst, -1], 1] > 0]; Select[ Range[244], fQ[ # ] &] (* Robert G. Wilson v, Mar 16 2005 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    is_A104210(n) = (gcd(n,A003961(n))>1); \\ Antti Karttunen, Dec 24 2024

Formula

{k such that gcd(k, A003961(k)) > 1}. - Antti Karttunen, Dec 24 2024

Extensions

More terms from Robert G. Wilson v, Mar 16 2005

A319627 Primorial deflation of n (denominator): Let f be the completely multiplicative function over the positive rational numbers defined by f(p) = A034386(p) for any prime number p; f constitutes a permutation of the positive rational numbers; let g be the inverse of f; for any n > 0, a(n) is the denominator of g(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 1, 4, 3, 7, 1, 11, 5, 2, 1, 13, 2, 17, 3, 10, 7, 19, 1, 9, 11, 8, 5, 23, 1, 29, 1, 14, 13, 3, 1, 31, 17, 22, 3, 37, 5, 41, 7, 4, 19, 43, 1, 25, 9, 26, 11, 47, 4, 21, 5, 34, 23, 53, 1, 59, 29, 20, 1, 33, 7, 61, 13, 38, 3, 67, 1, 71, 31, 6
Offset: 1

Views

Author

Rémy Sigrist, Sep 25 2018

Keywords

Comments

See A319626 for the corresponding numerators and additional comments.

Examples

			f(21/5) = (2*3) * (2*3*5*7) / (2*3*5) = 42, hence g(42) = 21/5 and a(42) = 5.
		

Crossrefs

Cf. A025487 (positions of 1's), A064989, A329900, A358217 [= bigomega(a(n))].
Cf. A319626 (numerators, see comments there).
Cf. also A307035, A337377, A348990 [= a(A003961(n))], A349169 (odd numbers k such that A348993(k) = a(k)), A354365/A354366.

Programs

  • Mathematica
    Array[#2/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &, 120] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    a(n) = my (f=factor(n)); denominator(prod(i=1, #f~, my (p=f[i,1]); (p/if (p>2, precprime(p-1), 1))^f[i,2]))

Formula

a(n) = A064989(n) / gcd(n, A064989(n)).
a(n) = 1 iff n belongs to A025487.

Extensions

"Primorial deflation" prefixed to the name by Antti Karttunen, Apr 29 2022

A349745 Numbers k for which k * gcd(sigma(k), A003961(k)) is equal to sigma(k) * gcd(k, A003961(k)), where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 120, 216, 672, 2464, 22176, 228480, 523776, 640640, 837760, 5581440, 5765760, 7539840, 12999168, 19603584, 33860736, 38342304, 71344000, 95472000, 102136320, 197308800, 220093440, 345080736, 459818240, 807009280, 975576960, 1476304896, 1510831360, 1773584640
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2021

Keywords

Comments

Numbers k for which k * A342671(k) = A000203(k) * A322361(k).
Numbers k such that gcd(A064987(k), A191002(k)) = gcd(A064987(k), A341529(k)).
Obviously, all odd terms in this sequence must be squares.
All the terms k of A005820 that satisfy A007949(k) < A007814(k) [i.e., whose 3-adic valuation is strictly less than their 2-adic valuation] are also terms of this sequence. Incidentally, the first six known terms of A005820 satisfy this condition, while on the other hand, any hypothetical odd 3-perfect number would be excluded from this sequence. Also, as a corollary, any hypothetical 3-perfect numbers of the form 4u+2 must not be multiples of 3 if they are to appear here. Similarly for any k which occurs in A349169, for 2*k to occur in this sequence, it shouldn't be a multiple of 3 and k should also be a term of A191218. See question 2 and its partial answer in A349169.
From Antti Karttunen, Feb 13-20 2022: (Start)
Question: Are all terms/2 (A351548) abundant, from n > 1 onward?
Note that of the 65 known 5-multiperfect numbers, all others except these three 1245087725796543283200, 1940351499647188992000, 4010059765937523916800 are also included in this sequence. The three exceptions are distinguished by the fact that their 3 and 5-adic valuations are equal. In 62 others the former is larger.
If k satisfying the condition were of the form 4u+2, then it should be one of the terms of A191218 doubled as only then both k and sigma(k) are of the form 4u+2, with equal 2-adic valuations for both. More precisely, one of the terms of A351538.
(End)

Crossrefs

Cf. also A349169, A349746, A351458, A351549 for other variants.
Subsequence of A351554 and also of its subsequence A351551.
Cf. A351459 (subsequence, intersection with A351458), A351548 (terms halved).

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[1] = True; q[n_] := n * GCD[(s = Times @@ f1 @@@ (f = FactorInteger[n])), (r = Times @@ f2 @@@ f)] == s*GCD[n, r]; Select[Range[10^6], q] (* Amiram Eldar, Nov 29 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349745(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == (s*gcd(n,u))); };

Formula

For all n >= 1, A007814(A000203(a(n))) = A007814(a(n)). [sigma preserves the 2-adic valuation of the terms of this sequence]

A349164 a(n) = A064989(A003961(n) / gcd(sigma(n), A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, while A064989 shifts it back towards smaller primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 3, 4, 5, 3, 7, 4, 9, 5, 11, 12, 13, 7, 15, 16, 17, 9, 19, 2, 21, 11, 23, 4, 25, 13, 9, 28, 29, 15, 31, 8, 33, 17, 35, 36, 37, 19, 39, 10, 41, 21, 43, 22, 45, 23, 47, 48, 49, 25, 51, 52, 53, 9, 55, 28, 19, 29, 59, 6, 61, 31, 63, 64, 13, 33, 67, 17, 69, 35, 71, 12, 73, 37, 75, 76, 77, 39, 79, 40, 81, 41, 83, 84
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Crossrefs

Cf. A349144 and A349168 [positions where a(n) is / is not relatively prime with A349163(n) = n/a(n)].

Programs

  • Mathematica
    Array[Times @@ Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#2/GCD[##]]] & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 84] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f=factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A349164(n) = { my(u=A003961(n)); A064989(u/gcd(u,sigma(n))); };

Formula

a(n) = A064989(A349161(n)).
a(n) = n / A349163(n).

A351554 Numbers k such that there are no odd prime factors p of sigma(k) such that p does not divide A003961(k) and the valuation(k, p) is different from valuation(sigma(k), p), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 14, 15, 20, 21, 22, 24, 27, 28, 30, 31, 33, 34, 40, 42, 46, 54, 57, 60, 62, 66, 69, 70, 84, 87, 91, 93, 94, 102, 105, 106, 110, 114, 120, 127, 130, 138, 140, 141, 142, 154, 160, 168, 170, 174, 177, 182, 186, 189, 190, 195, 198, 210, 214, 216, 217, 220, 224, 230, 231, 237, 238, 254, 260, 264, 270, 273
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Comments

Numbers k for which A351555(k) = 0. This is a necessary condition for the terms of A349169 and of A349745, therefore they are subsequences of this sequence.
All six known 3-perfect numbers (A005820) are included in this sequence.
All 65 known 5-multiperfects (A046060) are included in this sequence.
Moreover, all multiperfect numbers (A007691) seem to be in this sequence.
From Antti Karttunen, Aug 27 2025: (Start)
Multiperfect number m is included in this sequence only if its abundancy sigma(m)/m has only such odd prime factors p that prevprime(p) [A151799] divides m for each p. E.g., all 65 known 5-multiperfects are multiples of 3, and all known terms of A005820 and A046061 are even.
This sequence contains natural numbers k such that the odd primes in the prime factorization of sigma(k) have the same valuation there as in k, except that the primes in A003961(k) [or equally in A003961(A007947(k))] stand for "don't care primes", that are "masked off" from the comparison.
(End)

Crossrefs

Positions of zeros in A351555.
Subsequences: A000396, A351553 (even terms), A386430 (odd terms), A351551, A349169, A349745, A387160 (terms of the form prime * m^2), also these, at least all the currently (Feb 2022) known terms: A005820, A007691, A046060.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351555(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), (valuation(n,f[k,1])!=f[k,2]), 0)); };
    isA351554(n) = (0==A351555(n));
    
  • PARI
    isA351554(n) = { my(sh=A351546(n),f=factor(sh)); for(i=1,#f~, if((f[i,1]%2)&&valuation(n,f[i,1])!=f[i,2],return(0))); (1); }; \\ Uses also program given in A351546.

Extensions

Definition corrected by Antti Karttunen, Aug 22 2025

A348992 a(n) = A000265(sigma(n)) / gcd(sigma(n), A003961(n)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 7, 3, 1, 1, 5, 13, 3, 3, 7, 7, 1, 3, 31, 9, 13, 5, 1, 1, 3, 3, 1, 31, 7, 1, 7, 15, 3, 1, 7, 3, 9, 3, 91, 19, 5, 7, 5, 21, 1, 11, 7, 39, 3, 3, 31, 57, 31, 9, 49, 27, 1, 9, 5, 1, 15, 15, 1, 31, 1, 13, 127, 3, 3, 17, 7, 3, 3, 9, 13, 37, 19, 31, 35, 3, 7, 5, 31, 121, 21, 21, 7, 27, 11, 3, 5, 45, 39, 7, 7, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Denominator of ratio A003961(n) / A161942(n).

Crossrefs

Odd part of A349162.
Cf. A349161 (numerators).

Programs

  • Mathematica
    Array[#1/(2^IntegerExponent[#1, 2]*GCD[##]) & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 94] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A348992(n) = { my(s=sigma(n)); (A000265(s)/gcd(s,A003961(n))); };

Formula

a(n) = A161942(n) / A342671(n) = A000265(A349162(n)).
a(n) = A003961(A348993(n)).

A349174 Odd numbers k for which gcd(k, A003961(k)) is equal to gcd(sigma(k), A003961(k)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 63, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Odd numbers k for which A322361(k) = A342671(k).
Odd numbers k for which A348994(k) = A349161(k).
Odd numbers k such that A319626(k) = A349164(k).
Odd terms of A336702 form a subsequence of this sequence. See also A349169.
Ratio of odd numbers residing in this sequence, vs. in A349175 seems to slowly decrease, but still apparently stays > 2 for a long time. E.g., for range 2 .. 2^28, it is 95302074/38915653 = 2.4489...

Crossrefs

Cf. A349175 (complement among the odd numbers).
Union of A349176 and A349177.

Programs

  • Mathematica
    Select[Range[1, 169, 2], GCD[#1, #3] == GCD[#2, #3] & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349174(n) = if(!(n%2),0,my(u=A003961(n)); gcd(u,sigma(n))==gcd(u,n));

A349749 Odd numbers k for which the 3-adic valuation of sigma(k) is equal to the 3-adic valuation of k, where sigma is the sum of divisors function.

Original entry on oeis.org

1, 7, 13, 15, 19, 25, 31, 33, 37, 43, 61, 67, 69, 73, 79, 87, 91, 97, 103, 105, 109, 121, 123, 127, 133, 139, 141, 147, 151, 153, 157, 163, 175, 177, 181, 193, 195, 199, 211, 217, 223, 229, 231, 241, 247, 249, 259, 271, 277, 283, 285, 289, 301, 303, 307, 313, 325, 331, 337, 339, 343, 349, 367, 373, 375, 379, 393, 397
Offset: 1

Views

Author

Antti Karttunen, Nov 30 2021

Keywords

Comments

Odd numbers for which sigma (A000203) preserves the 3-adic valuation (A007949).

Crossrefs

Cf. A349169, A349752, A349755 (subsequences).

Programs

  • Mathematica
    Select[Range[1, 400, 2], IntegerExponent[DivisorSigma[1, #], 3] == IntegerExponent[#, 3] &] (* Amiram Eldar, Dec 01 2021 *)
  • PARI
    isA349749(n) = ((n%2)&&valuation(sigma(n),3)==valuation(n,3));
Showing 1-10 of 20 results. Next