cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A161942 Odd part of sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 7, 3, 3, 1, 15, 13, 9, 3, 7, 7, 3, 3, 31, 9, 39, 5, 21, 1, 9, 3, 15, 31, 21, 5, 7, 15, 9, 1, 63, 3, 27, 3, 91, 19, 15, 7, 45, 21, 3, 11, 21, 39, 9, 3, 31, 57, 93, 9, 49, 27, 15, 9, 15, 5, 45, 15, 21, 31, 3, 13, 127, 21, 9, 17, 63, 3, 9, 9, 195, 37, 57, 31, 35, 3, 21, 5, 93, 121, 63
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that iteration of this function will always reach 1. This implies the nonexistence of odd perfect numbers. This is equivalent to the same question for A000593, which can be expressed as the sum of the divisors of the odd part of n.
Up to 20000000, there are only two odd numbers with a(n) and a(a(n)) both >= n: 81 and 18966025. See A162284.
For the nonexistence proof of odd perfect numbers, it is enough to show that this sequence has no fixed points beyond the initial one. This is equivalent to a similar condition given for A326042. - Antti Karttunen, Jun 17 2019

Crossrefs

Programs

  • Mathematica
    oddPart[n_] := n/2^IntegerExponent[n, 2]; a[n_] := oddPart[ DivisorSigma[1, n]]; Table[a[n], {n, 1, 82}] (* Jean-François Alcover, Sep 03 2012 *)
  • PARI
    oddpart(n)=n/2^valuation(n,2);
    a(n)=oddpart(sigma(n));
    
  • Python
    from sympy import divisor_sigma
    def A161942(n): return (m:=int(divisor_sigma(n)))>>(~m&m-1).bit_length() # Chai Wah Wu, Mar 17 2023
  • Scheme
    (define (A161942 n) (A000265 (A000203 n))) ;; [For the implementations of A000203 and A000265, see under the respective entries]. - Antti Karttunen, Nov 18 2017
    

Formula

Multiplicative with a(p^e) = oddpart((p^{e+1}-1)/(p-1)), where oddpart(n) = A000265(n) is the largest odd divisor of n.
a(n) = A000265(A000203(n)).
a(n) = A337194(n)-1. - Antti Karttunen, Nov 30 2024

A342671 a(n) = gcd(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 3, 1, 15, 1, 3, 5, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 3, 1, 21, 1, 3, 1, 1, 7, 3, 1, 9, 1, 3, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 5, 9, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 13, 7, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A349756, A350071 [= a(n^2)], A355828 (Dirichlet inverse).
Cf. A349169, A349745, A355833, A355924 (applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));

Formula

a(n) = gcd(A000203(n), A003961(n)).
a(n) = gcd(A000203(n), A286385(n)) = gcd(A003961(n), A286385(n)).
a(n) = A341529(n) / A342672(n).
From Antti Karttunen, Jul 21 2022: (Start)
a(n) = A003961(n) / A349161(n).
a(n) = A000203(n) / A349162(n).
a(n) = A161942(n) / A348992(n).
a(n) = A003961(A349163(n)) = A003961(n/A349164(n)).
(End)

A349169 Numbers k such that k * gcd(sigma(k), A003961(k)) is equal to the odd part of {sigma(k) * gcd(k, A003961(k))}, where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 15, 105, 3003, 3465, 13923, 45045, 264537, 459459, 745875, 1541475, 5221125, 8729721, 10790325, 14171625, 29288025, 34563375, 57034575, 71430975, 99201375, 109643625, 144729585, 205016175, 255835125, 295708875, 356080725, 399242025, 419159475, 449323875, 928602675, 939495375, 1083656925, 1941623775, 1962350685, 2083228875
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A348990(k) [= k/gcd(k, A003961(k))] is equal to A348992(k), which is the odd part of A349162(k), thus all terms must be odd, as A348990 preserves the parity of its argument.
Equally, numbers k for which gcd(A064987(k), A191002(k)) is equal to A000265(gcd(A064987(k), A341529(k))).
Also odd numbers k for which A348993(k) = A319627(k).
Odd terms of A336702 are given by the intersection of this sequence and A349174.
Conjectures:
(1) After 1, all terms are multiples of 3. (Why?)
(2) After 1, all terms are in A104210, in other words, for all n > 1, gcd(a(n), A003961(a(n))) > 1. Note that if we encountered a term k with gcd(k, A003961(k)) = 1, then we would have discovered an odd multiperfect number.
(3) Apart from 1, 15, 105, 3003, 13923, 264537, all other terms are abundant. [These apparently are also the only terms that are not Zumkeller, A083207. Note added Dec 05 2024]
(4) After 1, all terms are in A248150. (Cf. also A386430).
(5) After 1, all terms are in A348748.
(6) Apart from 1, there are no common terms with A349753.
Note: If any of the last four conjectures could be proved, it would refute the existence of odd perfect numbers at once. Note that it seems that gcd(sigma(k), A003961(k)) < k, for all k except these four: 1, 2, 20, 160.
Questions:
(1) For any term x here, can 2*x be in A349745? (Partial answer: at least x should be in A191218 and should not be a multiple of 3). Would this then imply that x is an odd perfect number? (Which could explain the points (1) and (4) in above, assuming the nonexistence of opn's).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1/GCD[#1, #3] == #2/(2^IntegerExponent[#2, 2]*GCD[#2, #3]) & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349169(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == A000265(s)*gcd(n,u)); }; \\ (Program simplified Nov 30 2021)

Formula

For all n >= 1, A007949(A000203(a(n))) = A007949(a(n)). [sigma preserves the 3-adic valuation of the terms of this sequence] - Antti Karttunen, Nov 29 2021

Extensions

Name changed and comment section rewritten by Antti Karttunen, Nov 29 2021

A349161 a(n) = A003961(n) / gcd(sigma(n), A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 5, 9, 7, 5, 11, 9, 25, 7, 13, 45, 17, 11, 35, 81, 19, 25, 23, 3, 55, 13, 29, 9, 49, 17, 25, 99, 31, 35, 37, 27, 65, 19, 77, 225, 41, 23, 85, 21, 43, 55, 47, 39, 175, 29, 53, 405, 121, 49, 95, 153, 59, 25, 91, 99, 23, 31, 61, 15, 67, 37, 275, 729, 17, 65, 71, 19, 145, 77, 73, 45, 79, 41, 245, 207, 143, 85, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Numerator of ratio A003961(n) / A000203(n). Sequence A349162 gives the denominators.
Numerator of ratio A003961(n) / A161942(n). Sequence A348992 gives the denominators.
Both ratios are multiplicative because the constituent sequences are.
No 1's occur as terms after a(2), because for n > 2, sigma(n) < A003961(n). (See A286385).

Crossrefs

Programs

  • Mathematica
    Array[#2/GCD[##] & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 79] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349161(n) = { my(u=A003961(n)); (u/gcd(u,sigma(n))); };
    
  • Python
    from math import prod, gcd
    from sympy import nextprime, factorint
    def A349161(n):
        f = factorint(n).items()
        a = prod(nextprime(p)**e for p, e in f)
        b = prod((p**(e+1)-1)//(p-1) for p, e in f)
        return a//gcd(a,b) # Chai Wah Wu, Mar 17 2023

Formula

a(n) = A003961(n) / A342671(n) = A003961(n) / gcd(A000203(n), A003961(n)).
a(n) = A003961(A349164(n)).

A349162 a(n) = sigma(n) / gcd(sigma(n), A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 4, 7, 6, 4, 8, 5, 13, 6, 12, 28, 14, 8, 24, 31, 18, 13, 20, 2, 32, 12, 24, 4, 31, 14, 8, 56, 30, 24, 32, 7, 48, 18, 48, 91, 38, 20, 56, 10, 42, 32, 44, 28, 78, 24, 48, 124, 57, 31, 72, 98, 54, 8, 72, 40, 16, 30, 60, 8, 62, 32, 104, 127, 12, 48, 68, 14, 96, 48, 72, 13, 74, 38, 124, 140, 96, 56, 80, 62, 121, 42
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Denominator of ratio A003961(n) / A000203(n).
Small values are rare, but are not limited to the beginning. For example in range 1 .. 2^25, a(n) = 4 at n = 3, 6, 24, 792, 2720, 122944, 31307472.
Question: Would it be possible to prove that a(n) > 1 for all n > 2?
Obviously, 1's may occur only on squares & twice squares (A028982). See also comments in A350072. - Antti Karttunen, Feb 16 2022

Crossrefs

Cf. A000203, A003961, A028982 (positions of odd terms), A319630, A336702, A342671, A348992 (the odd part), A348993, A349161 (numerators), A349163, A349164, A349627, A349628, A350072 [= a(n^2)].
Cf. also A349745, A351551, A351554.

Programs

  • Mathematica
    Array[#1/GCD[##] & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 82] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };

Formula

a(n) = A000203(n) / A342671(n) = A000203(n) / gcd(A000203(n), A003961(n)).

A348993 a(n) = A064989(sigma(n) / gcd(sigma(n), A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, while A064989 shifts it back towards smaller primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 1, 3, 11, 2, 2, 5, 5, 1, 2, 29, 4, 11, 3, 1, 1, 2, 2, 1, 29, 5, 1, 5, 6, 2, 1, 5, 2, 4, 2, 55, 17, 3, 5, 3, 10, 1, 7, 5, 22, 2, 2, 29, 34, 29, 4, 25, 8, 1, 4, 3, 1, 6, 6, 1, 29, 1, 11, 113, 2, 2, 13, 5, 2, 2, 4, 11, 31, 17, 29, 15, 2, 5, 3, 29, 49, 10, 10, 5, 8, 7, 2, 3, 12, 22, 5, 5, 1, 2, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Crossrefs

Cf. A000203, A000265, A003961, A064989, A161942, A342671, A348992, A349162, A349169 (gives odd k for which a(k) = A319627(k)).

Programs

  • Mathematica
    Array[Times @@ Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#1/GCD[##]]] & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 96] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };
    A348993(n) = A064989(A349162(n));

Formula

a(n) = A064989(A349162(n)) = A064989(A348992(n)).

A348990 a(n) = n / gcd(n, A003961(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 10, 11, 4, 13, 14, 3, 16, 17, 6, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 2, 31, 32, 33, 34, 5, 4, 37, 38, 39, 40, 41, 14, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 18, 55, 56, 57, 58, 59, 4, 61, 62, 63, 64, 65, 22, 67, 68, 69, 10, 71, 8, 73, 74, 15, 76, 7, 26, 79, 80, 81, 82, 83, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Denominator of ratio A003961(n) / n. This ratio is fully multiplicative, and A348994(n) / a(n) = A319626(A003961(n)) / A319627(A003961(n)) gives it in its lowest terms.

Crossrefs

Cf. A000035, A000961, A002110, A003961, A319626, A319627, A319630 (fixed points), A322361, A349169 (where equal to A348992).
Cf. A348994 (numerators).

Programs

  • Mathematica
    Array[#1/GCD[##] & @@ {#, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 84] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A348990(n) = (n/gcd(n, A003961(n)));

Formula

a(n) = n / A322361(n) = n / gcd(n, A003961(n)).
a(n) = A319627(A003961(n)).
For all odd numbers n, a(n) = A003961(A319627(n)).
For all n >= 1, A000035(A348990(n)) = A000035(n). [Preserves the parity]

A349756 Numbers k such that the odd part of sigma(k) is equal to gcd(sigma(k), A003961(k)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 20, 21, 24, 27, 31, 42, 54, 57, 60, 62, 93, 114, 120, 127, 140, 160, 168, 186, 189, 216, 217, 220, 237, 254, 264, 301, 378, 381, 399, 408, 420, 434, 460, 474, 480, 513, 540, 552, 602, 620, 651, 660, 744, 762, 792, 798, 837, 840, 889, 903, 940, 1026, 1080, 1120, 1128, 1140, 1302, 1320, 1380, 1392, 1512
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2021

Keywords

Comments

Numbers k for which A161942(k) = A342671(k).
From Antti Karttunen, Jul 23 2022: (Start)
Numbers k such that k is a multiple of A350073(k).
For any square s in this sequence, A349162(s) = 1, i.e. sigma(s) divides A003961(s), and also A286385(s). Question: Is 1 the only square in this sequence? (see the conjecture in A350072).
If both x and y are terms and gcd(x, y) = 1, then x*y is also present.
After 2, the only primes present are Mersenne primes, A000668.
(End)

Crossrefs

Positions of 1's in A348992.
Positions where the powers of 2 (A000079) occur in A349162.
Cf. A000203, A003961, A161942, A286385, A342671, A350072, A350073, A355946 (characteristic function).
Cf. A000668, A046528 (subsequences).
Cf. also A348943.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; oddpart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := oddpart[(sigma = DivisorSigma[1, n])] == GCD[sigma, s[n]]; Select[Range[1500], q] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A355946(n) = { my(s=sigma(n)); !(A003961(n)%((s>>=valuation(s,2)))); };
    isA349756(n) = A355946(n);
Showing 1-8 of 8 results.