cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A348742 Odd numbers k for which A161942(k) >= k, where A161942 is the odd part of sigma.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2205, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 9801, 10201, 10609, 11025, 11449, 11881, 12321
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

All odd squares (A016754) are present, but not all terms are squares. A348743 gives the nonsquare terms.
Odd terms of A336702 form a subsequence. Also all odd terms of A005820 would be present here, as well as any hypothetical quasi-perfect numbers (see comments and references in A332223, A336700), both in A016754. - Antti Karttunen, Nov 28 2024

Crossrefs

Union of A016754 and A348743.
Cf. A161942, A162284 (subsequence), A336702, A348741 (complement among the odd numbers).

Programs

  • Maple
    q:= n-> (t-> is(t/2^padic[ordp](t,2)>=n))(numtheory[sigma](n)):
    select(q, [2*i-1$i=1..10000])[];  # Alois P. Heinz, Nov 28 2024
  • Mathematica
    odd[n_] := n/2^IntegerExponent[n, 2]; Select[Range[1, 10^4, 2], odd[DivisorSigma[1, #]] >= # &] (* Amiram Eldar, Nov 02 2021, edited (because of the changed definition) by Antti Karttunen, Nov 28 2024 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    isA348742(n) = ((n%2)&&A000265(sigma(n))>=n); \\ revised by Antti Karttunen, Nov 28 2024

Extensions

a(1) = 1 inserted as the initial term, because of the changed definition (from > to >=) - Antti Karttunen, Nov 28 2024

A286260 Compound filter: a(n) = P(A001511(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 1, 39, 4, 8, 1, 157, 79, 47, 4, 39, 22, 8, 4, 600, 37, 782, 11, 256, 1, 47, 4, 157, 466, 233, 11, 39, 106, 47, 1, 2284, 4, 380, 4, 4281, 172, 122, 22, 1132, 211, 8, 56, 256, 742, 47, 4, 600, 1597, 4373, 37, 1278, 352, 122, 37, 157, 11, 1037, 106, 256, 466, 8, 79, 8785, 211, 47, 137, 2083, 4, 47, 37, 19507, 667, 1655, 466, 669, 4, 233, 11, 4661, 7261
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A000265(n) = (n >> valuation(n, 2));
    A161942(n) = A000265(sigma(n));
    A286260(n) = (2 + ((A001511(n)+A161942(n))^2) - A001511(n) - 3*A161942(n))/2;
    for(n=1, 16384, write("b286260.txt", n, " ", A286260(n)));
    
  • Python
    from sympy import factorint, divisors, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n))))
    def a161942(n): return a000265(divisor_sigma(n))
    def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a001511(n), a161942(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286260 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A161942 n)) 2) (- (A001511 n)) (- (* 3 (A161942 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A161942(n))^2) - A001511(n) - 3*A161942(n)).

A348741 Odd numbers k for which A161942(k) < k, where A161942 is the odd part of sigma.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Differs from A088828 for the first time at n=1080, where a(1080) = 2207, while A088828(1080) = 2205 = A348743(1), the value which is missing from this sequence.

Crossrefs

Setwise difference A088828 \ A348743.
Cf. A161942, A348742 (complement among the odd numbers).
Cf. also A348738, A348753, A348931.

Programs

  • Mathematica
    odd[n_] := n/2^IntegerExponent[n, 2]; Select[Range[1, 150, 2], odd[DivisorSigma[1, #]] < # &] (* Amiram Eldar, Nov 02 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    isA348741(n) = ((n%2)&&A000265(sigma(n))
    				

A348743 Odd nonsquares k for which A161942(k) >= k, where A161942 is the odd part of sigma.

Original entry on oeis.org

2205, 19845, 108045, 143325, 178605, 187425, 236925, 266805, 319725, 353925, 372645, 407925, 452025, 462825, 584325, 637245, 646425, 658125, 672525, 789525, 796005, 804825, 845325, 920205, 972405, 981225, 1007325, 1055925, 1069425, 1102725, 1113525, 1116225, 1166445, 1201725, 1245825, 1289925, 1378125, 1380825, 1442925
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

The first non-multiples of 5 are a(103) = 6243237 and a(125) = 8164233.
From Antti Karttunen, Nov 28 2024: (Start)
This is not a subsequence of A228058. At least k = A000040(28)*(A002110(27)/2)^2 = 15388519572341080054329140040512468358441210638435506649120749687401476705908239675 is a number of the form 4m+3 such that A161942(k) >= k.
Another such number is A000040(28)*81*(A002110(25)/6)^2 = 1279741205456530915782536871495922949062895982530933679752838870798129159675.
Question: What is the smallest term of this sequence that is of the form 4m+3, and thus not in A386427 (in A191218 and in A228058)?
(End)

Crossrefs

Intersection of A088828 and A348742.
Cf. A386427 (a subsequence, which agrees for a very long time).
Cf. also A065235, A162284.

Programs

  • PARI
    A000265(n) = (n >> valuation(n, 2));
    isA348743(n) = ((n%2)&&!issquare(n)&&A000265(sigma(n))>=n); \\ Edited Nov 28 2024

Extensions

Definition changed (from > to >=) to formally include also any hypothetical odd perfect numbers - Antti Karttunen, Nov 28 2024
Comment removed, because it was more related to sequence A386427. - Antti Karttunen, Aug 21 2025

A286034 Compound filter: a(n) = P(A046523(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 3, 49, 8, 34, 3, 239, 124, 97, 8, 165, 30, 34, 34, 1051, 47, 1237, 17, 508, 21, 97, 8, 727, 565, 331, 74, 165, 122, 733, 3, 4403, 34, 502, 34, 7911, 192, 196, 72, 2302, 233, 526, 68, 508, 1237, 97, 8, 3051, 1774, 5368, 97, 1782, 380, 727, 97, 727, 51, 1231, 122, 3220, 498, 34, 288, 18019, 331, 733, 155, 2713, 34, 733, 47, 35317, 705, 1897, 873, 1047, 34
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A161942(n) = A000265(sigma(n));
    A286034(n) = (2 + ((A046523(n)+A161942(n))^2) - A046523(n) - 3*A161942(n))/2;
    for(n=1, 16384, write("b286034.txt", n, " ", A286034(n)));
    
  • Python
    from sympy import factorint, divisors, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n))))
    def a161942(n): return a000265(divisor_sigma(n))
    def a(n): return T(a046523(n), a161942(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286034 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A161942 n)) 2) (- (A046523 n)) (- (* 3 (A161942 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A161942(n))^2) - A046523(n) - 3*A161942(n)).

A162284 Odd numbers n such that b(n) >= n and b(b(n)) >= n, where b(n) = A161942(n) = oddpart(sigma(n)).

Original entry on oeis.org

1, 81, 18966025, 135187129, 164275489, 350561925, 445421025, 598047025, 649587169, 748733769, 850830561, 960362325, 1055925025, 1341097641, 1406175001, 1476326929, 1520766009, 1536248025, 1591004025, 1735566525
Offset: 1

Views

Author

Keywords

Comments

Applying b a third time produces a smaller value for every number in this sequence up to 10^10, except 1.
Of the first 43 terms, only the following nine are not squares: 350561925, 960362325, 1591004025, 1735566525, 1753206525, 1831175325, 4558583925, 6745097205, 8766517725, and incidentally, all of them are terms of A228058. - Antti Karttunen, Jun 16 2019
But see also comments in A348743. - Antti Karttunen, Nov 30 2024

Crossrefs

Subsequence of A348742.
Cf. also A348743.

Extensions

Values for n > 3 from Robert Gerbicz

A356307 The nearest common ancestor of A161942(n) and gcd(A000265(n), sigma(n)) in the A253563-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 3, 1, 1, 9, 7, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 04 2022

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A161942(n) = A000265(sigma(n));
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A356300sq(x,y) = if(1==x||1==y,1, my(lista=List([]), i, k=x, stemvec, stemlen, h=y); while(k>1, listput(lista,k); k = A253553(k)); stemvec = Vecrev(Vec(lista)); stemlen = #stemvec; while(1, if((i=vecsearch(stemvec,h))>0, return(stemvec[i])); h = A253553(h)));
    A356307(n) = A356300sq(A161942(n), gcd(n, A161942(n)));

Formula

a(n) = A356300(A161942(n), A355931(n)) = A356300(A161942(n), gcd(n, A161942(n))).

A286358 Compound filter: a(n) = P(A286357(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 4, 6, 22, 8, 13, 10, 106, 79, 47, 13, 39, 30, 19, 19, 466, 47, 742, 24, 233, 21, 58, 19, 139, 466, 233, 32, 49, 122, 70, 21, 1954, 26, 380, 26, 4096, 192, 139, 49, 1037, 233, 34, 81, 256, 782, 70, 26, 531, 1597, 4279, 70, 1227, 380, 157, 70, 157, 41, 1037, 139, 280, 498, 34, 124, 8002, 256, 83, 174, 2018, 34, 83, 70, 18916, 705, 1655, 531, 669, 34, 280, 41
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Comments

Partitions natural numbers to the same equivalence classes as A000203. That is, for all i, j: a(i) = a(j) <=> A000203(i) = A000203(j). This follows because both A161942(n) and A286357(n) can be (are) defined as functions of A000203, and on the other hand, A000203(n) can be uniquely reconstructed from A161942(n) and A286357(n), thus from a(n).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A286357(n)+A161942(n))^2) - A286357(n) - 3*A161942(n)).

A326042 a(n) = A064989(sigma(A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, and A064989 shifts it back towards smaller primes.

Original entry on oeis.org

1, 1, 2, 11, 1, 2, 2, 3, 29, 1, 5, 22, 4, 2, 2, 49, 3, 29, 2, 11, 4, 5, 6, 6, 34, 4, 22, 22, 1, 2, 17, 55, 10, 3, 2, 319, 10, 2, 8, 3, 7, 4, 2, 55, 29, 6, 8, 98, 85, 34, 6, 44, 6, 22, 5, 6, 4, 1, 29, 22, 13, 17, 58, 1091, 4, 10, 4, 33, 12, 2, 31, 87, 3, 10, 68, 22, 10, 8, 10, 49, 469, 7, 12, 44, 3, 2, 2, 15, 25, 29, 8, 66, 34, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2019

Keywords

Comments

For any other number n than those in A326182 we have a(n) < A003961(n).
Fixed points k (for which a(k) = k) satisfy A003973(k) = 2^e * A003961(k) for some exponent e >= 0. Applying A003961 to such numbers gives the odd terms in A336702, of which there are likely to be just a single instance, its initial 1. (Clarified Nov 07 2021).
Conjecture: There are no other fixed points than a(1) = 1. If true, then there are no odd perfect numbers. This condition is equivalent to the condition that if A161942 has no fixed points larger than one, then there are no odd perfect numbers. This follows as whenever k is a fixed point, that is, a(k) = k, then we should also have A003961(a(k)) = A003961(A064989(sigma(A003961(k)))) = A161942(A003961(k)) = A003961(k). Note that A003961 is an injective and surjective mapping from natural numbers to odd numbers, A064989 is its (left) inverse, and composition A003961(A064989(n)) is equivalent to A000265(n).
From Antti Karttunen, Aug 05 2020: (Start)
For any hypothetical odd perfect number x, we would have A003973(k) = 2 * A003961(k), with k = A064989(x) and x = A003961(k). Thus we would have a(k) = A064989(sigma(A003961(k))) = A064989(sigma(x)) = A064989(2*x) = A064989(x) = k. On the other hand, A003973(k) = sigma(A003961(k)) < A003961(A003961(k)) [see A286385 for the reason why], so a necessary condition for this is that x should be one of the terms of A246282. (Clarified Dec 01 2020).
(End)

Crossrefs

Cf. A000037, A000203, A000265, A000593, A003961, A003973, A064989, A161942, A162284, A246282, A286385, A326041, A326182, A336702 (numbers whose abundancy index is a power of 2).
Cf. A348736 [n - a(n)], A348738 [a(n) < n], A348739 [a(n) > n], A348750 [= A064989(a(A003961(n)))], A348940 [gcd(n,a(n))], A348941, A348942, A351456, A353767, A353790, A353794.
Cf. also A332223 for another conjugation of sigma.

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; a1[1] = 1; a1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := a2[DivisorSigma[1, a1[n]]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));

Formula

a(n) = A064989(A003973(n)) = A064989(sigma(A003961(n))).
For k in A000037, a(k) = A064989(A003973(k)/2) = A064989((1/2)*sigma(A003961(k))).
Multiplicative with a(p^e) = A064989((q^(e+1)-1)/(q-1)), where q = nextPrime(p). - Antti Karttunen, Nov 05 2021
a(n) = A353790(n) / A353767(n) = A353794(n) / A351456(n). - Antti Karttunen, May 13 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 05 2021

A342671 a(n) = gcd(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 3, 1, 15, 1, 3, 5, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 3, 1, 21, 1, 3, 1, 1, 7, 3, 1, 9, 1, 3, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 5, 9, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 13, 7, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A349756, A350071 [= a(n^2)], A355828 (Dirichlet inverse).
Cf. A349169, A349745, A355833, A355924 (applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));

Formula

a(n) = gcd(A000203(n), A003961(n)).
a(n) = gcd(A000203(n), A286385(n)) = gcd(A003961(n), A286385(n)).
a(n) = A341529(n) / A342672(n).
From Antti Karttunen, Jul 21 2022: (Start)
a(n) = A003961(n) / A349161(n).
a(n) = A000203(n) / A349162(n).
a(n) = A161942(n) / A348992(n).
a(n) = A003961(A349163(n)) = A003961(n/A349164(n)).
(End)
Showing 1-10 of 52 results. Next