A286451 Compound filter (2-adic valuation of sigma(n) & 2-adic valuation of n): a(n) = P(A286357(n), A001511(n)), where P(n,k) is sequence A000027 used as a pairing function, with a(1) = 0 by an explicit convention.
0, 2, 6, 4, 3, 9, 10, 7, 1, 5, 6, 13, 3, 14, 10, 11, 3, 2, 6, 8, 21, 9, 10, 18, 1, 5, 10, 19, 3, 14, 21, 16, 15, 5, 15, 4, 3, 9, 10, 12, 3, 27, 6, 13, 3, 14, 15, 24, 1, 2, 10, 8, 3, 14, 10, 25, 15, 5, 6, 19, 3, 27, 10, 22, 6, 20, 6, 8, 21, 20, 10, 7, 3, 5, 6, 13, 21, 14, 15, 17, 1, 5, 6, 34, 6, 9, 10, 18, 3, 5, 15, 19, 36, 20, 10, 31, 3, 2, 6, 4, 3, 14, 10
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pairing Function
Programs
-
PARI
A001511(n) = (1+valuation(n,2)); A286357(n) = A001511(sigma(n)); A286451(n) = if(1==n,0,(1/2)*(2 + ((A286357(n)+A001511(n))^2) - A286357(n) - 3*A001511(n))); for(n=1, 10000, write("b286451.txt", n, " ", A286451(n)));
-
Python
from sympy import divisor_sigma as D def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a001511(n): return bin(n)[2:][::-1].index("1") + 1 def a(n): return 0 if n==1 else T(a001511(D(n)), a001511(n)) # Indranil Ghosh, May 14 2017
-
Scheme
(define (A286451 n) (if (= 1 n) 0 (* (/ 1 2) (+ (expt (+ (A286357 n) (A001511 n)) 2) (- (A286357 n)) (- (* 3 (A001511 n))) 2))))