A286466 Compound filter: a(n) = P(A112049(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 2, 5, 12, 2, 16, 5, 38, 7, 16, 9, 94, 2, 16, 23, 138, 2, 67, 5, 80, 16, 16, 9, 355, 7, 16, 38, 80, 2, 436, 5, 530, 16, 16, 40, 706, 2, 16, 23, 302, 2, 436, 5, 80, 67, 16, 9, 1228, 7, 67, 23, 80, 2, 277, 23, 302, 16, 16, 14, 2021, 2, 16, 80, 2082, 16, 436, 5, 80, 16, 436, 9, 2704, 2, 16, 80, 80, 16, 436, 5, 1178, 121, 16, 9, 2086, 16, 16, 23, 302, 2, 1771
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A112049(n) = for(i=1,(2*n),if((kronecker(i,(n+n+1)) < 1),return(primepi(i)))); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A286466(n) = (1/2)*(2 + ((A112049(n)+A046523(n))^2) - A112049(n) - 3*A046523(n)); for(n=1, 10000, write("b286466.txt", n, " ", A286466(n)));
-
Python
from sympy import jacobi_symbol as J, factorint, isprime, primepi def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a049084(n): return primepi(n) if isprime(n) else 0 def a112046(n): i=1 while True: if J(i, 2*n + 1)!=1: return i else: i+=1 def a112049(n): return a049084(a112046(n)) def a(n): return T(a112049(n), a046523(n)) # Indranil Ghosh, May 11 2017
-
Scheme
(define (A286466 n) (* (/ 1 2) (+ (expt (+ (A112049 n) (A046523 n)) 2) (- (A112049 n)) (- (* 3 (A046523 n))) 2)))
Comments