cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A286480 Compound filter (prime signature of n & prime signature of n+d(n)): a(n) = P(A046523(n), A286479(n)), where P(n,k) is sequence A000027 used as a pairing function and d(n) is number of divisors of n (A000005).

Original entry on oeis.org

2, 12, 5, 14, 5, 61, 12, 179, 109, 61, 5, 265, 23, 142, 27, 226, 5, 607, 23, 148, 42, 61, 12, 1509, 109, 601, 44, 148, 5, 625, 23, 698, 27, 61, 61, 1117, 23, 601, 27, 2509, 5, 850, 80, 265, 148, 142, 12, 1426, 109, 607, 61, 148, 23, 430, 27, 3765, 27, 61, 5, 8575, 80, 601, 148, 2144, 61, 625, 23, 148, 27, 1741, 5, 8587, 80, 601, 363, 148, 216, 625, 138, 5719
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Times @@ MapIndexed[Prime[First[#2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]]; Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {f@ n, f[n + DivisorSigma[0, n]]}, {n, 80}] (* Michael De Vlieger, May 21 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286479(n) = A046523(n+numdiv(n));
    A286480(n) = (1/2)*(2 + ((A046523(n)+A286479(n))^2) - A046523(n) - 3*A286479(n));
    
  • Python
    from sympy import factorint, divisor_count
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a286479(n): return a046523(n + divisor_count(n))
    def a(n): return T(a046523(n), a286479(n)) # Indranil Ghosh, May 21 2017
  • Scheme
    (define (A286480 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A286479 n)) 2) (- (A046523 n)) (- (* 3 (A286479 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A286479(n))^2) - A046523(n) - 3*A286479(n)).

A286529 a(n) = d(n+d(n)), where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

2, 3, 2, 2, 2, 4, 3, 6, 6, 4, 2, 6, 4, 6, 2, 4, 2, 8, 4, 4, 3, 4, 3, 6, 6, 8, 2, 4, 2, 4, 4, 4, 2, 4, 4, 6, 4, 8, 2, 10, 2, 6, 6, 6, 4, 6, 3, 4, 6, 8, 4, 4, 4, 4, 2, 7, 2, 4, 2, 12, 6, 8, 4, 2, 4, 4, 4, 4, 2, 8, 2, 12, 6, 8, 5, 4, 5, 4, 5, 12, 4, 4, 4, 12, 2, 12, 4, 12, 4, 8, 4, 6, 2, 6, 6, 12, 6, 8, 8, 2, 2, 8, 8, 10, 2, 8, 2, 16, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n + DivisorSigma[0, n]], {n, 117}] (* Michael De Vlieger, May 21 2017 *)
  • PARI
    A286529(n) = numdiv(n+numdiv(n));
    
  • Python
    from sympy import divisor_count as d
    def a(n): return d(n + d(n)) # Indranil Ghosh, May 21 2017
  • Scheme
    (define (A286529 n) (A000005 (+ n (A000005 n))))
    

Formula

a(n) = A000005(A062249(n)) = A000005(n+A000005(n)).
Sum_{k=1..n} a(k) ~ D*n*log(n) + O(n*log(n)/log(log(n))), where D > 0 is a constant (conjectured with an error O(n) by Ivić, 1992; proven by Kátai, 2007). - Amiram Eldar, Jul 08 2020
Showing 1-2 of 2 results.