A286514 Array read by antidiagonals: T(m,n) = number of dominating sets in the stacked prism graph C_m X P_n.
1, 3, 3, 5, 11, 7, 9, 41, 51, 11, 17, 149, 383, 183, 21, 31, 547, 2865, 2629, 663, 39, 57, 2007, 21449, 38437, 18635, 2435, 71, 105, 7361, 160579, 561743, 531669, 133709, 8935, 131, 193, 27001, 1202181, 8207075, 15179657, 7455797, 956009, 32775, 241
Offset: 1
Examples
Table starts: =========================================================== m\n| 1 2 3 4 5 6 ---|------------------------------------------------------- 1 | 1 3 5 9 17 31 ... 2 | 3 11 41 149 547 2007 ... 3 | 7 51 383 2865 21449 160579 ... 4 | 11 183 2629 38437 561743 8207075 ... 5 | 21 663 18635 531669 15179657 433200191 ... 6 | 39 2435 133709 7455797 416118655 23213149395 ... 7 | 71 8935 956009 104209625 11369806353 1239821606103 ... ...
Links
- Stephan Mertens, Table of n, a(n) for n = 1..325 (first 91 terms from Andrew Howroyd)
- Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], Aug 2024.
- Eric Weisstein's World of Mathematics, Dominating Set
- Eric Weisstein's World of Mathematics, Stacked Prism Graph
- Wikipedia, Dominating set