cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286518 Number of finite connected sets of positive integers greater than one with least common multiple n.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 20, 1, 4, 4, 8, 1, 20, 1, 20, 4, 4, 1, 88, 2, 4, 4, 20, 1, 96, 1, 16, 4, 4, 4, 196, 1, 4, 4, 88, 1, 96, 1, 20, 20, 4, 1, 368, 2, 20, 4, 20, 1, 88, 4, 88, 4, 4, 1, 1824, 1, 4, 20, 32, 4, 96, 1, 20, 4, 96, 1, 1688, 1, 4, 20, 20, 4, 96, 1, 368, 8, 4, 1, 1824, 4, 4, 4, 88, 1, 1824, 4, 20
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Feb 17 2024

Examples

			The a(6)=4 sets are: {6}, {2,6}, {3,6}, {2,3,6}.
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Rest[Divisors[n]]],zsm[#]==={n}&]],{n,2,20}]
  • PARI
    isconnected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A286518aux(n, parts, from=1, ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==n && isconnected(ss), s++); for(i=from, k, newss = List(ss); listput(newss, parts[i]); s += A286518aux(n, parts, i+1, newss)); (s) };
    A286518(n) = if(1==n, n, A286518aux(n, divisors(n))); \\ Antti Karttunen, Feb 17 2024

Formula

From Antti Karttunen, Feb 17 2024: (Start)
a(n) <= A069626(n).
It seems that a(n) >= A318670(n), for all n > 1.
(End)

Extensions

Term a(1)=1 prepended and more terms added by Antti Karttunen, Feb 17 2024