A286544 Restricted growth sequence of A285333.
1, 2, 3, 3, 4, 5, 5, 4, 6, 5, 7, 6, 8, 9, 9, 5, 10, 9, 11, 8, 12, 13, 14, 9, 13, 6, 15, 11, 16, 17, 17, 8, 18, 17, 19, 13, 20, 17, 21, 8, 22, 17, 23, 24, 25, 23, 26, 13, 27, 11, 28, 16, 29, 30, 31, 17, 32, 9, 33, 34, 24, 35, 35, 6, 36, 37, 38, 39, 40, 41, 42, 13, 43, 44, 45, 28, 46, 28, 34, 6, 47, 48, 49, 21, 50, 35, 51, 39, 52, 53, 54, 55, 56, 57, 58, 11, 59
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8191
Programs
-
PARI
allocatemem(2^30); rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016 A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014 A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); }; A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); }; A285333(n) = if(!n,n,if(!(n%2),A285332(n/2),A048675(A285332(n)))); write_to_bfile(0,rgs_transform(vector(8192,n,A285333(n-1))),"b286544.txt");