A286563 Triangular table T(n,k) read by rows: T(n,1) = 1, and for 1 < k <= n, T(n,k) = the highest exponent e such that k^e divides n.
1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 0, 1, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
The first fifteen rows of this triangular table: 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 0, 1, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Links
Crossrefs
Programs
-
Maple
T := (n, k) -> ifelse(k = 1, 1, padic:-ordp(n, k)): for n from 1 to 12 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Apr 07 2025
-
Mathematica
Table[If[k == 1, 1, IntegerExponent[n, k]], {n, 15}, {k, n}] // Flatten (* Michael De Vlieger, May 20 2017 *)
-
Python
def T(n, k): i=1 if k==1: return 1 while n%(k**i)==0: i+=1 return i-1 for n in range(1, 21): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, May 20 2017
-
Scheme
(define (A286563 n) (A286561bi (A002024 n) (A002260 n))) ;; For A286561bi see A286561.
Formula
T(n,k) = A286561(n,k) listed row by row for n >= 1, k = 1 .. n.
Comments