A286568 Compound filter (phi(n) & 2-adic valuation of sigma(n)): a(n) = P(A000010(n), A286357(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 1, 8, 3, 14, 8, 42, 10, 21, 14, 76, 19, 90, 42, 63, 36, 152, 21, 208, 44, 148, 76, 322, 53, 210, 90, 228, 117, 434, 63, 625, 136, 296, 152, 402, 78, 702, 208, 375, 152, 860, 148, 988, 251, 324, 322, 1271, 169, 903, 210, 627, 324, 1430, 228, 943, 375, 816, 434, 1828, 187, 1890, 625, 777, 528, 1273, 296, 2344, 560, 1220, 402, 2698, 300, 2700, 702, 901
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A000010(n) = eulerphi(n); A001511(n) = (1+valuation(n,2)); A286357(n) = A001511(sigma(n)); A286568(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n));
-
Python
from sympy import divisor_sigma as D, totient def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a001511(n): return bin(n)[2:][::-1].index("1") + 1 def a286357(n): return a001511(D(n)) def a(n): return T(totient(n), a286357(n)) # Indranil Ghosh, May 26 2017
-
Scheme
(define (A286568 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A286357 n)) 2) (- (A000010 n)) (- (* 3 (A286357 n))) 2)))