A286572 Compound filter (2-adic valuation of phi(n) & sigma(n)): a(n) = P(A053574(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.
0, 1, 7, 22, 23, 67, 29, 122, 79, 173, 67, 408, 107, 277, 328, 531, 214, 742, 191, 949, 530, 631, 277, 1894, 498, 905, 781, 1598, 467, 2704, 497, 2149, 1178, 1600, 1228, 4188, 743, 1771, 1656, 4282, 949, 4658, 947, 3572, 3163, 2557, 1129, 8005, 1597, 4373, 2855, 4953, 1487, 7141, 2704, 7384, 3242, 4097, 1771, 14539, 1955, 4561, 5462, 8520, 3745
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A000203(n) = sigma(n); A053574(n) = valuation(eulerphi(n), 2); A286572(n) = (1/2)*(2 + ((A053574(n)+A000203(n))^2) - A053574(n) - 3*A000203(n));
-
Python
from sympy import totient, divisor_sigma def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a007814(n): return 1 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") def a(n): return T(a007814(totient(n)), divisor_sigma(n)) # Indranil Ghosh, May 26 2017
-
Scheme
(define (A286572 n) (* (/ 1 2) (+ (expt (+ (A053574 n) (A000203 n)) 2) (- (A053574 n)) (- (* 3 (A000203 n))) 2)))