cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286573 Compound filter: a(n) = P(A007733(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 2, 5, 7, 14, 23, 9, 29, 42, 40, 65, 80, 90, 31, 40, 121, 44, 142, 189, 109, 61, 115, 77, 302, 273, 148, 318, 94, 434, 532, 20, 497, 115, 86, 148, 826, 702, 271, 148, 355, 230, 601, 119, 220, 265, 131, 299, 1178, 297, 485, 86, 265, 1430, 838, 320, 328, 271, 556, 1769, 1957, 1890, 50, 142, 2017, 148, 751, 2277, 179, 373, 832, 665, 2932, 54, 856, 485
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A007733(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ This function from Michel Marcus, Apr 11 2015
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286573(n) = (1/2)*(2 + ((A007733(n)+A046523(n))^2) - A007733(n) - 3*A046523(n));
    
  • Python
    from sympy import divisors, factorint
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a002326(n):
        m=1
        while True:
            if (2**m - 1)%(2*n + 1)==0: return m
            else: m+=1
    def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n))))
    def a007733(n): return a002326((a000265(n) - 1)/2)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a007733(n), a046523(n)) # Indranil Ghosh, May 26 2017

Formula

a(n) = (1/2)*(2 + ((A007733(n)+A046523(n))^2) - A007733(n) - 3*A046523(n)).