A286573 Compound filter: a(n) = P(A007733(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 2, 5, 7, 14, 23, 9, 29, 42, 40, 65, 80, 90, 31, 40, 121, 44, 142, 189, 109, 61, 115, 77, 302, 273, 148, 318, 94, 434, 532, 20, 497, 115, 86, 148, 826, 702, 271, 148, 355, 230, 601, 119, 220, 265, 131, 299, 1178, 297, 485, 86, 265, 1430, 838, 320, 328, 271, 556, 1769, 1957, 1890, 50, 142, 2017, 148, 751, 2277, 179, 373, 832, 665, 2932, 54, 856, 485
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A007733(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ This function from Michel Marcus, Apr 11 2015 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A286573(n) = (1/2)*(2 + ((A007733(n)+A046523(n))^2) - A007733(n) - 3*A046523(n));
-
Python
from sympy import divisors, factorint def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a002326(n): m=1 while True: if (2**m - 1)%(2*n + 1)==0: return m else: m+=1 def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n)))) def a007733(n): return a002326((a000265(n) - 1)/2) def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a(n): return T(a007733(n), a046523(n)) # Indranil Ghosh, May 26 2017