A286609 Numbers k for which the binary representation of the primes that divide k (A087207) is more than k.
7, 11, 13, 17, 19, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 76, 79, 82, 83, 86, 87, 89, 92, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 114, 115, 116, 118, 122, 123, 124, 127, 129, 131, 133, 134, 137, 138, 139, 141, 142, 145, 146, 148, 149, 151, 155
Offset: 1
Links
Programs
-
Mathematica
b[n_] := If[n= 1, 0, Total[2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]]; filterQ[n_] := b[n] >= n; Select[Range[1000], filterQ] (* Jean-François Alcover, Dec 31 2020 *)
-
PARI
A007947(n) = factorback(factorint(n)[, 1]); A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ After Michel Marcus A087207(n) = A048675(A007947(n)); isA286608(n) = (A087207(n) < n); n=0; j=1; k=1; while(k <= 10000, n=n+1; if(isA286608(n), write("b286608.txt", j, " ", n); j=j+1, write("b286609.txt", k, " ", n); k=k+1));
-
Python
from sympy import factorint, primepi def a(n): f=factorint(n) return sum([2**primepi(i - 1) for i in f]) print([n for n in range(1, 201) if a(n)>n]) # Indranil Ghosh, Jun 20 2017
-
Scheme
;; With Antti Karttunen's IntSeq-library. (define A286609 (MATCHING-POS 1 1 (lambda (n) (> (A087207 n) n))))
Comments