cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A224898 G.f.: Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k).

Original entry on oeis.org

1, 0, -1, -1, -1, -1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1, 0, -1, -2, -2, -4, -4, -5, -5, -6, -5, -6, -4, -4, -3, -2, 1, 1, 4, 5, 8, 9, 12, 12, 15, 15, 17, 16, 18, 15, 16, 13, 13, 8, 7, 1, 0, -7, -9, -17, -19, -27, -29, -37, -38, -46, -46, -53, -51, -57, -53, -57, -51, -53, -45, -45, -32, -31
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2013

Keywords

Comments

Conjecture: a(n+1) = A286744(n) - A286745(n). - George Beck May 13 2017

Examples

			G.f.: A(x) = 1 - x^2 - x^3 - x^4 - x^5 + x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + x^15 + x^16 - x^18 +...
where
A(x) = 1 - x^2/(1-x) + x^6/((1-x)*(1-x^2)) - x^12/((1-x)*(1-x^2)*(1-x^3)) + x^20/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) - x^30/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) +...
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(sum(m=0, sqrtint(n), (-1)^m*x^(m*(m+1))/prod(k=1, m, 1-x^k,1+x*O(x^n))),n)
    for(n=0, 80, print1(a(n), ", "))

A286745 Number of distinct partitions of n with parts differing by at least two with smallest part at least two and with an odd number of parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 20, 22, 25, 28, 31, 34, 39, 42, 47, 52, 58, 64, 72, 79, 89, 99, 111, 123, 139, 154, 173, 193, 216, 240, 269, 298, 333, 369, 410, 453, 503, 554, 613, 674, 743, 815, 897, 981, 1077, 1177, 1288, 1405, 1536, 1672, 1825, 1985, 2163, 2350, 2558, 2776, 3019, 3275, 3557, 3856, 4186, 4534, 4919
Offset: 0

Views

Author

George Beck, May 13 2017

Keywords

Examples

			a(12) = 2 because of the partitions of 12, 12 and 6+4+2 are the only two that satisfy all three conditions.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
          `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+2, 1-t)))
        end:
    a:= n-> b(n, 2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Nov 23 2017
  • Mathematica
    Table[Length@ Select[ip@n, Min[-Differences@#] >= 2 && Min@# >= 2 && OddQ@Length@# &], {n, 20}]

Formula

a(n) ~ exp(2*Pi*sqrt(n/15)) / (4 * 3^(1/4) * sqrt(5*phi) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 10 2020
Showing 1-2 of 2 results.