cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286757 Number of labeled connected rooted trivalent graphs with 2n nodes.

Original entry on oeis.org

0, 4, 120, 33600, 18471600, 18386121600, 30231607606200, 76388992266787200, 281063897503929540000, 1444102677105174358272000, 10020068498645397815029407000, 91355440119583548608158042584000, 1069762020017605579789451640683370000
Offset: 1

Views

Author

Sean A. Irvine, May 13 2017

Keywords

Comments

A006607 gives values matching Table 1 (p. 342) of Wormald. However, the values in the table for n > 4 do not appear to match formulas given for generating the table.

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

Formula

Let b(0)=b(1)=0, b(n) = 2*binomial(2*n, 2)*b(n-1) + 12*binomial(2*n, 4)*b(n-2) + 6*binomial(2*n, 3)*A002829(n-1) + 60*binomial(2*n, 5)*A002829(n-2) + 1260*binomial(2*n, 7)*A002829(n-3). a(n)=b(n) except a(2)=4.
Let Q(x) be an e.g.f. for A002829: Q(x) = 1 + (1/4!)*x^4 + (70/6!)*x^6 + (19355/8!)*x^8 + ...; then A(x), the e.g.f. for this sequence, satisfies (2 - 2*x^2 - x^4) * (A(x) - (1/6)*x^4) = (2*x^3 + x^5 + (1/2)*x^7) * Q'(x) where Q'(x) is the derivative of Q(x) with respect to x.