A286764 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps D=(1,-1), H=(1,0) and S=(0,1).
1, 3, 16, 109, 855, 7298, 65838, 617118, 5946781, 58506642, 584894463, 5921596628, 60565217546, 624644829720, 6487216108058, 67767838847144, 711463437534474, 7501409431304796, 79386836213817417, 842882477863610604, 8974911258934880498, 95806877080558096428
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..960
Programs
-
Maple
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, [1$2], (p-> p+[0, p[1]])(b(x-1, y)+b(x, y-1)+b(x-1, y+1)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..30);
-
Mathematica
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, {1, 1}, Function[ p, p + {0, p[[1]]}][b[x - 1, y] + b[x, y - 1] + b[x - 1, y + 1]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 28 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * phi^(5*n) / sqrt(n), where phi = A001622 is the golden ratio and c = 0.036755631845424682385214848270310481743236419858524834059514156934711202... - Vaclav Kotesovec, Sep 11 2021