A286783 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1, 3, 15, 5, 105, 77, 7, 945, 1044, 234, 9, 10395, 14784, 5390, 550, 11, 135135, 227877, 113126, 19760, 1105, 13, 2027025, 3862305, 2371845, 586425, 58275, 1995, 15, 34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17, 654729075, 1469813400, 1185214452, 446964322, 84487110, 7888876, 333564, 5244, 19, 13749310575, 32718512925, 28937407212, 12516198870, 2884205268, 358182846, 23006928, 690480, 7875, 21
Offset: 0
Examples
A(x;t) = 1 + 3*x + (15 + 5*t)*x^2 + (105 + 77*t + 7*t^2)*x^3 + ... Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [7] [0] 1; [1] 3; [2] 15, 5; [3] 105, 77, 7; [4] 945, 1044, 234, 9; [5] 10395, 14784, 5390, 550, 11; [6] 135135, 227877, 113126, 19760, 1105, 13; [7] 2027025, 3862305, 2371845, 586425, 58275, 1995, 15; [8] 34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17; [9] ...
Links
- Gheorghe Coserea, Rows n=0..123, flattened
- Luca G. Molinari, Hedin's equations and enumeration of Feynman's diagrams, arXiv:cond-mat/0401500 [cond-mat.str-el], 2005.
Programs
-
Mathematica
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t] // Simplify]; s = y0[x, t]; se = (1 + x*s + 2*x^2*D[s, x])/(1 - x*s)^2 + O[x]^max // Normal; row[n_] := row[n] = CoefficientList[Coefficient[se, x, n], t]; T[0, 0] = 1; T[n_, k_] := row[n][[k + 1]]; Table[T[n, k], {n, 0, max-1}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
-
PARI
A286781_ser(N,t='t) = { my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1); while(n++, y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2; if (y1 == y0, break()); y0 = y1;); y0; }; A286783_ser(N,t='t) = { my(s=A286781_ser(N,t)); (1 + x*s + 2*x^2*deriv(s,'x))/(1-x*s)^2; }; concat(apply(p->Vecrev(p), Vec(A286783_ser(10))))
Comments