cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286783 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 3, 15, 5, 105, 77, 7, 945, 1044, 234, 9, 10395, 14784, 5390, 550, 11, 135135, 227877, 113126, 19760, 1105, 13, 2027025, 3862305, 2371845, 586425, 58275, 1995, 15, 34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17, 654729075, 1469813400, 1185214452, 446964322, 84487110, 7888876, 333564, 5244, 19, 13749310575, 32718512925, 28937407212, 12516198870, 2884205268, 358182846, 23006928, 690480, 7875, 21
Offset: 0

Views

Author

Gheorghe Coserea, May 14 2017

Keywords

Comments

Row n>0 contains n terms.
T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the polarization function in a many-body theory of fermions with two-body interaction (see Molinari link).

Examples

			A(x;t) = 1 + 3*x + (15 + 5*t)*x^2 + (105 + 77*t + 7*t^2)*x^3 + ...
Triangle starts:
n\k  [0]       [1]       [2]       [3]       [4]      [5]     [6]   [7]
[0]  1;
[1]  3;
[2]  15,       5;
[3]  105,      77,       7;
[4]  945,      1044,     234,      9;
[5]  10395,    14784,    5390,     550,      11;
[6]  135135,   227877,   113126,   19760,    1105,    13;
[7]  2027025,  3862305,  2371845,  586425,   58275,   1995,   15;
[8]  34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17;
[9]  ...
		

Programs

  • Mathematica
    max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t] // Simplify];
    s = y0[x, t];
    se = (1 + x*s + 2*x^2*D[s, x])/(1 - x*s)^2  + O[x]^max // Normal;
    row[n_] := row[n] = CoefficientList[Coefficient[se, x, n], t];
    T[0, 0] = 1; T[n_, k_] := row[n][[k + 1]];
    Table[T[n, k], {n, 0, max-1}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
  • PARI
    A286781_ser(N,t='t) = {
      my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
      while(n++,
        y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
        if (y1 == y0, break()); y0 = y1;);
      y0;
    };
    A286783_ser(N,t='t) = {
      my(s=A286781_ser(N,t)); (1 + x*s + 2*x^2*deriv(s,'x))/(1-x*s)^2;
    };
    concat(apply(p->Vecrev(p), Vec(A286783_ser(10))))

Formula

A(x;t) = Sum_{n>=0} P_n(t)*x^n = (1 + x*s + 2*x^2*deriv(s,x))/(1-x*s)^2, where s(x;t) = A286781(x;t) and P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.
A001147(n+1)=T(n,0), A001700(n)=P_n(-1), A286794(n)=P_n(1).