Original entry on oeis.org
5, 77, 1044, 14784, 227877, 3862305, 71983440, 1469813400, 32718512925, 789901955325, 20578796752500, 575836554270600, 17232413940017325, 549370878062313825, 18591830334684129600, 665771181527890746000, 25154357611638416671125, 1000094581801108086418125, 41741166856778766269392500
Offset: 2
-
A286781_ser(N, t='t) = {
my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
while(n++,
y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
if (y1 == y0, break()); y0 = y1;);
y0;
};
Kol(K, N=20) = {
my(s = A286781_ser(N+K+1, 't+O('t^(K+1))),
p = (1 + x*s + 2*x^2*s')/(1-x*s)^2);
vector(N, n, polcoeff(polcoeff(p, K+n), K));
};
Kol(1)
Original entry on oeis.org
7, 234, 5390, 113126, 2371845, 51607716, 1185214452, 28937407212, 752882360571, 20870819679150, 615571317411570, 19277508315195090, 639508594242409065, 22419339547774938120, 828617069130919072200, 32214653364317860157400, 1314580813236368248272975, 56192348229571762396268850
Offset: 3
Original entry on oeis.org
9, 550, 19760, 586425, 16271380, 446964322, 12516198870, 362901875292, 10984979930625, 348559615602900, 11613184968311010, 406385382363237945, 14927815613184463440, 575018321453046128700, 23197450399028711170020, 978734324107274793589440, 43125048817869336467480865
Offset: 4
Original entry on oeis.org
11, 1105, 58275, 2356234, 84487110, 2884205268, 97429005146, 3329662705550, 116630388753489, 4219224762555705, 158324528197417845, 6176733251642200764, 250790095398521046060, 10599852184347703429872, 466235894350970551104804, 21329051731506881800764804
Offset: 5
A286781
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 2, 1, 10, 9, 1, 74, 91, 23, 1, 706, 1063, 416, 46, 1, 8162, 14193, 7344, 1350, 80, 1, 110410, 213953, 134613, 34362, 3550, 127, 1, 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1, 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1, 576037442, 1375636129, 1223392968, 533394516, 124266346, 15653598, 1023340, 31356, 366, 1
Offset: 0
A(x;t) = 1 + (2 + t)*x + (10 + 9*t + t^2)*x^2 + (74 + 91*t + 23*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 2, 1;
[2] 10, 9, 1;
[3] 74, 91, 23, 1;
[4] 706, 1063, 416, 46, 1;
[5] 8162, 14193, 7344, 1350, 80, 1;
[6] 110410, 213953, 134613, 34362, 3550, 127, 1;
[7] 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1;
[8] 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1;
[9] ...
For vertex and polarization functions see
A286782 and
A286783. For GWA of the self-energy and polarization functions see
A286784 and
A286785.
-
max = 10; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
Table[row[n], {n, 0, max-1}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
-
A286781_ser(N,t='t) = {
my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
while(n++,
y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
if (y1 == y0, break()); y0 = y1;);
y0;
};
concat(apply(p->Vecrev(p), Vec(A286781_ser(10))))
\\ test: y = A286781_ser(50); y*(1-x*y)^2 == (1 + x*y + 2*x^2*deriv(y,'x)) * (1 - x*y*(1-t))
A286784
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 15, 9, 1, 14, 56, 56, 16, 1, 42, 210, 300, 150, 25, 1, 132, 792, 1485, 1100, 330, 36, 1, 429, 3003, 7007, 7007, 3185, 637, 49, 1, 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1, 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1, 16796, 167960, 629850, 1162800, 1162800, 651168, 203490, 34200, 2850, 100, 1
Offset: 0
A(x;t) = 1 + (1 + t)*x + (2 + 4*t + t^2)*x^2 + (5 + 15*t + 9*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 1;
[2] 2, 4, 1;
[3] 5, 15, 9, 1;
[4] 14, 56, 56, 16, 1;
[5] 42, 210, 300, 150, 25, 1;
[6] 132, 792, 1485, 1100, 330, 36, 1;
[7] 429, 3003, 7007, 7007, 3185, 637, 49, 1;
[8] 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1;
[9] 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1;
[10] ...
-
/* As triangle */ [[(Binomial(2*n, n+m)*Binomial(n+1, m))/(n+1): m in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 23 2018
-
Flatten@Table[Binomial[2 n, n + m] Binomial[n + 1, m] / (n + 1), {n, 0, 10}, {m, 0, n}] (* Vincenzo Librandi, Sep 23 2018 *)
-
T(n,m):=(binomial(2*n,n+m)*binomial(n+1,m))/(n+1); /* Vladimir Kruchinin, Sep 23 2018 */
-
A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
concat(apply(p->Vecrev(p), Vec(A286784_ser(12))))
\\ test: y=A286784_ser(50); y*(1-x*y)^2 == 1 + ('t-1)*x*y
A286785
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 2, 5, 2, 14, 14, 2, 42, 72, 27, 2, 132, 330, 220, 44, 2, 429, 1430, 1430, 520, 65, 2, 1430, 6006, 8190, 4550, 1050, 90, 2, 4862, 24752, 43316, 33320, 11900, 1904, 119, 2, 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2, 58786, 406980, 1046520, 1302336, 854658, 301644, 55860, 5040, 189, 2, 208012, 1634380, 4903140, 7354710, 6056820, 2826516, 743820, 106260, 7590, 230, 2
Offset: 0
A(x;t) = 1 + 2*x + (5 + 2*t)*x^2 + (14 + 14*t + 2*t^2)*x^3 + ...
Triangle starts:
n\k | 0 1 2 3 4 5 6 7 8
-----+-----------------------------------------------------------
0 | 1;
1 | 2;
2 | 5, 2;
3 | 14, 14, 2;
4 | 42, 72, 27, 2;
5 | 132, 330, 220, 44, 2;
6 | 429, 1430, 1430, 520, 65, 2;
7 | 1430, 6006, 8190, 4550, 1050, 90, 2;
8 | 4862, 24752, 43316, 33320, 11900, 1904, 119, 2;
9 | 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2;
-
T(n,k):=(binomial(n-1,k)*binomial(2*(n+1),n-k))/(n+1); /* Vladimir Kruchinin, Jan 14 2022 */
-
A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
A286785_ser(N,t='t) = 1/(1-x*A286784_ser(N,t))^2;
concat(apply(p->Vecrev(p), Vec(A286785_ser(12))))
A286795
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 4, 3, 27, 31, 5, 248, 357, 117, 7, 2830, 4742, 2218, 314, 9, 38232, 71698, 42046, 9258, 690, 11, 593859, 1216251, 837639, 243987, 30057, 1329, 13, 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15, 202601898, 472751962, 404979234, 166620434, 35456432, 3857904, 196532, 3812, 17, 4342263000, 10651493718, 9869474106, 4561150162, 1149976242, 160594860, 11946360, 426852, 5904, 19
Offset: 0
A(x;t) = 1 + x + (4 + 3*t)*x^2 + (27 + 31*t + 5*t^2)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 1;
[2] 4, 3;
[3] 27, 31, 5;
[4] 248, 357, 117, 7;
[5] 2830, 4742, 2218, 314, 9;
[6] 38232, 71698, 42046, 9258, 690, 11;
[7] 593859, 1216251, 837639, 243987, 30057, 1329, 13;
[8] 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15;
[9] ...
-
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = ((1 + x*(1 + 2 t + x t^2) y0[x, t]^2 + t (1 - t)*x^2*y0[x, t]^3 + 2 x^2 y0[x, t] D[y0[x, t], x]))/(1 + 2 x*t) + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
Table[row[n], {n, 0, max - 1}] // Flatten (* Jean-François Alcover, May 23 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
concat(apply(p->Vecrev(p), Vec(A286795_ser(11))))
\\ test: y=A286795_ser(50); 0 == 1 - (1 + 2*x*t)*y + x*(1 + 2*t + x*t^2)*y^2 + t*(1-t)*x^2*y^3 + 2*x^2*y*y'
A286798
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. .
Original entry on oeis.org
1, 1, 4, 2, 27, 22, 248, 264, 30, 2830, 3610, 830, 8, 38232, 55768, 18746, 1078, 593859, 961740, 414720, 46986, 576, 10401712, 18326976, 9457788, 1593664, 62682, 112, 202601898, 382706674, 226526362, 49941310, 3569882, 45296, 4342263000, 8697475368, 5740088706, 1540965514, 160998750, 4909674, 16896, 101551822350, 213865372020, 154271354280, 48205014786, 6580808784, 337737294, 4200032, 2560
Offset: 0
A(x;t) = 1 + x + (4 + 2*t)*x^2 + (27 + 22*t)*x^3 + (248 + 264*t + 30*t^2)*x^4 +
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[0] 1;
[1] 1;
[2] 4, 2;
[3] 27, 22;
[4] 248, 264, 30;
[5] 2830, 3610, 830, 8;
[6] 38232, 55768, 18746, 1078;
[7] 593859, 961740, 414720, 46986, 576;
[8] 10401712, 18326976, 9457788, 1593664, 62682, 112;
[9] 202601898, 382706674, 226526362, 49941310, 3569882, 45296;
[10] ...
-
max = 12; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = 1 + x y0[x, t]^2 + 3 t x^3 y0[x, t]^2 D[y0[x, t], x] + x^2 (2 y0[x, t] D[y0[x, t], x] + t (2 y0[x, t]^3 - D[y0[x, t], x] + y0[x, t] D[y0[x, t], x])) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];
P[n_, t_] := Coefficient[y0[x, t] , x, n];
row[n_] := CoefficientList[P[n, t], t];
Table[row[n], {n, 0, max}] // Flatten (* Jean-François Alcover, May 24 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286798_ser(N,t='t) = {
my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
};
concat(apply(p->Vecrev(p), Vec(A286798_ser(12))))
\\ test: y=A286798_ser(50); x^2*y' == (1 - y + x*y^2 + 2*x^2*t*y^3)/(t - (2+t)*y - 3*x*t*y^2)
A286800
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 2, 7, 6, 63, 74, 10, 729, 974, 254, 8, 10113, 15084, 5376, 406, 161935, 264724, 117424, 14954, 320, 2923135, 5163276, 2697804, 481222, 23670, 112, 58547761, 110483028, 65662932, 14892090, 1186362, 21936, 1286468225, 2570021310, 1695874928, 461501018, 51034896, 1866986, 11264, 30747331223, 64547199082, 46461697760, 14603254902, 2055851560, 116329886, 1905888, 2560
Offset: 1
A(x;t) = x + (1 + 2*t)*x^2 + (7 + 6*t)*x^3 + (63 + 74*t + 10*t^2)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[1] 1;
[2] 1, 2;
[3] 7, 6;
[4] 63, 74, 10;
[5] 729, 974, 254, 8;
[6] 10113, 15084, 5376, 406;
[7] 161935, 264724, 117424, 14954, 320;
[8] 2923135, 5163276, 2697804, 481222, 23670, 112;
[9] 58547761, 110483028, 65662932, 14892090, 1186362, 21936;
[10] ...
-
max = 12; y0[0, ] = y1[0, ] = 0; y0[x_, t_] = x; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1/(-1 + y0[x, t]))*x*(-1 - y0[x, t]^2 - 2*y0[x, t]*(-1 + D[y0[x, t], x]) + t*x*(-1 + y0[x, t])*(2*(-1 + y0[x, t])^2 + (x*(-1 + y0[x, t]) + y0[x, t])*D[y0[x, t], x])) + O[x]^n]; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[SeriesCoefficient[y0[x, t], {x, 0, n}], t];
Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286798_ser(N,t='t) = {
my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
};
A286800_ser(N, t='t) = {
my(v = A286798_ser(N,t)); 1-1/subst(v, 'x, serreverse(x*v^2));
};
concat(apply(p->Vecrev(p), Vec(A286800_ser(12))))
\\ test: y=A286800_ser(50); x*y' == (1-y) * (2*t*x^2*(1-y)^2 + x*(1-y) - y) / (t*x^2*(1-y)^2 - t*x*y*(1-y) - 2*y)
Showing 1-10 of 11 results.
Comments