cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A286799 Row sums of A286798.

Original entry on oeis.org

1, 1, 6, 49, 542, 7278, 113824, 2017881, 39842934, 865391422, 20486717908, 524816312106, 14463876594476, 426759508580416, 13423937511765492, 448515527244396873, 15865571912065180326, 592432249691301719190, 23290086526099237126180, 961614574423928988516286, 41607005553456012247259844
Offset: 0

Views

Author

Gheorghe Coserea, May 21 2017

Keywords

Crossrefs

Cf. A286798.

Programs

  • Mathematica
    max = 22; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = 1 + x y0[x, t]^2 + 3 t x^3 y0[x, t]^2 D[y0[x, t], x] + x^2 (2 y0[x, t] D[y0[x, t], x] + t (2 y0[x, t]^3 - D[y0[x, t], x] + y0[x, t] D[y0[x, t], x])) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];
    P[n_, t_] := Coefficient[y0[x, t] , x, n];
    a[n_] := CoefficientList[P[n, t], t] // Total;
    Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
  • PARI
    A286795_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++,
        y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
        y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
    };
    A286798_ser(N,t='t) = {
      my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
    };
    Vec(A286798_ser(21,1))

A291844 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 4, 2, 29, 23, 274, 292, 36, 3145, 4068, 994, 16, 42294, 62861, 22250, 1512, 651227, 1075562, 484840, 61027, 1060, 11295242, 20275944, 10867381, 1977879, 93188, 280, 217954807, 418724047, 255929070, 59896915, 4823178, 80632, 4632600152, 9418874022, 6387031115, 1798212190, 204846125, 7410676, 37056, 107572674851, 229535650138, 169414005231, 55017177704, 8022471066, 463514918, 7255380, 7040
Offset: 0

Views

Author

Gheorghe Coserea, Oct 24 2017

Keywords

Comments

Row n>0 contains floor((2*n+2)/3) terms.

Examples

			A(x;t) = 1 + x + (4 + 2*t)*x^2 + (29 + 23*t)*x^3 + (274 + 292*t + 36*t^2)*x^4 + ...
Triangle starts:
n\k  [0]        [1]        [2]        [3]       [4]      [5]
[0]  1;
[1]  1;
[2]  4,         2;
[3]  29,        23;
[4]  274,       292,       36;
[5]  3145,      4068,      994,       16;
[6]  42294,     62861,     22250,     1512;
[7]  651227,    1075562,   484840,    61027,    1060;
[8]  11295242,  20275944,  10867381,  1977879,  93188,   280;
[9]  217954807, 418724047, 255929070, 59896915, 4823178, 80632;
[10] ...
		

Crossrefs

Columns k=0..5 give A294160 (k=0), A294161 (k=1), A294162 (k=2), A294163 (k=3), A294164 (k=4), A294165 (k=5).

Programs

  • Mathematica
    m = maxExponent = 13; Z[_] = 0;
    Do[Z[t_] = -(((1 - l + l (1+t) Z[t]) (-((t Z[t])/(1 + l t)) - (1 - t - 2 l t^2)/(1 - l + l (1+t) Z[t]) - 2 t^2 Z'[t]))/((1+t) (1 - t - 2 l t^2))) + O[t]^m // Normal // Simplify, {m}];
    gamma[t_] = ((1 + l t)(-1 + Z[t] + t Z[t]))/(Z[t]^2 (t + l t (-1 + Z[t] + t Z[t]))) + O[t]^m // Normal // Simplify;
    CoefficientList[# + O[l]^m, l]& /@ Most @ CoefficientList[gamma[t], t] // Flatten (* Jean-François Alcover, Nov 17 2018 *)
  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1,t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    concat(apply(p->Vecrev(p), Vec(A291844_ser(12))))

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y = ((1+x)*z - 1) * (1 + t*x)/((1-t + t*(1+x)*z)*x*z^2), where z = A291843(x;t) and P_n(t) = Sum_{k=0..floor((2*n-1)/3)} T(n,k)*t^k for n > 0.
A294158(n) = P_n(1), A294159(n)=P_n(-1), A294160(n)=P_n(0).

A291843 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 0, 1, 5, 3, 36, 33, 2, 329, 388, 72, 3655, 5101, 1545, 64, 47844, 75444, 30700, 3023, 20, 721315, 1248911, 621937, 97200, 3134, 12310199, 22964112, 13269140, 2793713, 180936, 1656, 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352, 4939227215, 10316541393, 7336995966, 2239771686, 293933437, 13977294, 140660
Offset: 0

Views

Author

Gheorghe Coserea, Oct 23 2017

Keywords

Comments

Row n > 0 contains floor((2*n+1)/3) terms.

Examples

			A(x;t) = 1 + x^2 + (5 + 3*t)*x^3 + (36 + 33*t + 2*t^2)*x^4 + ...
Triangle starts:
n\k  [0]        [1]        [2]        [3]       [4]      [5]     [6]
[0]  1;
[1]  0;
[2]  1;
[3]  5,         3;
[4]  36,        33,        2;
[5]  329,       388,       72;
[6]  3655,      5101,      1545,      64;
[7]  47844,     75444,     30700,     3023,     20;
[8]  721315,    1248911,   621937,    97200,    3134;
[9]  12310199,  22964112,  13269140,  2793713,  180936,  1656;
[10] 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352;
[11] ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 11; Clear[Z, Zp]; Z[_] = 0;
    Do[
    Zp[t_] = Z'[t] + O[t]^n // Normal;
    Z[t_] = (-(1/(2L t (1+t)))) (-1 + t - 2L t + 2L^2 t^4 (1 + Zp[t]) + t^2 (1 + 2L + 2L Zp[t]) + L t^3 (3 + 2L + 2(1+L) Zp[t]) + Sqrt[4L t (1+t) (1 + L t)(-1 + t + 2L t^2 + 2(-1 + L) t^2 Zp[t]) + (-1 + t (1 + t + L (-2 + t (2 + t (3 + 2L (1+t))))) + 2L t^2 (1+t)(1 + L t) Zp[t])^2]) + O[t]^n // Normal // Simplify,
    {n, nmax+1}];
    CoefficientList[#, L]& /@ CoefficientList[Z[t], t] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 23 2018 *)
  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    concat(apply(p->if(p === Pol(0,'t), [0], Vecrev(p)), Vec(A291843_ser(12))))
    \\ test: y=A291843_ser(56); 2*x^2*deriv(y,x) == (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x)

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies 2*x^2*deriv(y,x) = (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x), with y(0;t)=1, where P_n(t) = Sum_{k=0..floor((2*n-2)/3)} T(n,k)*t^k for n > 0. (see eqn. (24) in Molinari link)
A278990(n) = P_n(0), A294166(n) = P_n(1), A082582(n) = P_n(-1) for n > 1.
A267827(n) = T(3*n+1, 2*n), n > 0. - Danny Rorabaugh, Nov 10 2017
Showing 1-3 of 3 results.