A286785 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1, 2, 5, 2, 14, 14, 2, 42, 72, 27, 2, 132, 330, 220, 44, 2, 429, 1430, 1430, 520, 65, 2, 1430, 6006, 8190, 4550, 1050, 90, 2, 4862, 24752, 43316, 33320, 11900, 1904, 119, 2, 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2, 58786, 406980, 1046520, 1302336, 854658, 301644, 55860, 5040, 189, 2, 208012, 1634380, 4903140, 7354710, 6056820, 2826516, 743820, 106260, 7590, 230, 2
Offset: 0
Examples
A(x;t) = 1 + 2*x + (5 + 2*t)*x^2 + (14 + 14*t + 2*t^2)*x^3 + ... Triangle starts: n\k | 0 1 2 3 4 5 6 7 8 -----+----------------------------------------------------------- 0 | 1; 1 | 2; 2 | 5, 2; 3 | 14, 14, 2; 4 | 42, 72, 27, 2; 5 | 132, 330, 220, 44, 2; 6 | 429, 1430, 1430, 520, 65, 2; 7 | 1430, 6006, 8190, 4550, 1050, 90, 2; 8 | 4862, 24752, 43316, 33320, 11900, 1904, 119, 2; 9 | 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2;
Links
- Gheorghe Coserea, Rows n = 0..123, flattened
Programs
-
Maxima
T(n,k):=(binomial(n-1,k)*binomial(2*(n+1),n-k))/(n+1); /* Vladimir Kruchinin, Jan 14 2022 */
-
PARI
A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x; A286785_ser(N,t='t) = 1/(1-x*A286784_ser(N,t))^2; concat(apply(p->Vecrev(p), Vec(A286785_ser(12))))
Formula
y(x;t) = Sum_{n>=0} P_n(t)*x^n = 1/(1-x*s)^2, where s(x;t) = A286784(x;t) and P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.
A000108(n+1) = T(n,0), A002058(n+3) = T(n,1), A014106(n-1) = T(n,n-2), A006013(n) = P_n(1), A211789(n+1) = P_n(2).
T(n,k) = C(n-1,k)*C(2*n+2,n-k)/(n+1). - Vladimir Kruchinin, Jan 14 2022
Comments