cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286797 Row sums of A286796.

Original entry on oeis.org

1, 2, 10, 82, 898, 12018, 187626, 3323682, 65607682, 1424967394, 33736908874, 864372576626, 23825543471234, 703074672632018, 22118247888976170, 739081808704195650, 26146116129400483842, 976382058777174451650, 38386296866727499728522, 1584986693941237056394386
Offset: 0

Views

Author

Gheorghe Coserea, May 21 2017

Keywords

Crossrefs

Cf. A286796.

Programs

  • Mathematica
    max = 20; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];
    a[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t] // Total;
    Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
  • PARI
    A286795_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++,
        y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
        y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
    };
    A286796_ser(N,t='t) = my(v=A286795_ser(N,t)); v/(1-x*t*v);
    Vec(A286796_ser(20,1))
    
  • PARI
    A049464_ser(N) = {  \\ for A049464(0)=0
      my(s=Ser(concat(1, vector(N+1, n, (2*n)!/(2^n*n!)))), g=(1/s - 1/s^2)/x);
      1 - 1/subst(g, 'x, serreverse(x*g^2*s^2));
    };
    A286797_ser(N) = my(q=A049464_ser(N)); q/(x-x*q);
    Vec(A286797_ser(20))

Formula

a(n) = Sum_{k=0..n} A286796(n,k).
a(n) ~ 2^(n + 5/2) * n^(n+2) / exp(n+2). - Vaclav Kotesovec, Mar 08 2022