cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286815 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Product_{j>=1} (1 - x^(2*j))^5/((1 - x^j)*(1 - x^(4*j)))^2)^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 0, 0, 1, 6, 4, 0, 0, 1, 8, 12, 0, 2, 0, 1, 10, 24, 8, 4, 0, 0, 1, 12, 40, 32, 6, 8, 0, 0, 1, 14, 60, 80, 24, 24, 0, 0, 0, 1, 16, 84, 160, 90, 48, 24, 0, 0, 0, 1, 18, 112, 280, 252, 112, 96, 0, 4, 2, 0, 1, 20, 144, 448, 574, 312, 240, 64, 12
Offset: 0

Views

Author

Seiichi Manyama, May 27 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k squares.
This is the transpose of the array in A122141.

Examples

			Square array begins:
   1, 1, 1,  1,  1, ...
   0, 2, 4,  6,  8, ...
   0, 0, 4, 12, 24, ...
   0, 0, 0,  8, 32, ...
   0, 2, 4,  6, 24, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          A(n, k-1) +2*add(A(n-j^2, k-1), j=1..isqrt(n))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 27 2017
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, If[n < 0 || k < 1, 0, A[n, k-1] + 2*Sum[A[n-j^2, k-1], {j, 1, Sqrt[n]}]]];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 28 2018, after Alois P. Heinz *)

Formula

G.f. of column k: (Product_{j>=1} (1 - x^(2*j))^5/((1 - x^j)*(1 - x^(4*j)))^2)^k.