A286850 Number of minimal dominating sets in the 2 X n king graph.
2, 4, 6, 16, 20, 52, 80, 176, 296, 592, 1104, 2064, 3936, 7296, 14048, 25984, 49600, 92736, 175872, 330240, 623232, 1175296, 2213632, 4176128, 7863808, 14838784, 27948544, 52707328, 99320832, 187257856, 352940032, 665276416, 1254090752, 2363805696, 4455927808
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (0, 2, 2, 4, 0, -8).
Crossrefs
Row 2 of A286849.
Programs
-
Mathematica
Table[RootSum[8 - 4 #1^2 - 2 #1^3 - 2 #1^4 + #1^6 &, 36 #1^n - 36 #1^(2 + n) + 55 #1^(3 + n) - 3 #1^(4 + n) + 32 #1^(5 + n) &]/970, {n, 10}] (* Eric W. Weisstein, Aug 04 2017 *) LinearRecurrence[{0, 2, 2, 4, 0, -8}, {2, 4, 6, 16, 20, 52}, 20] (* Eric W. Weisstein, Aug 03 2017 *) CoefficientList[Series[-((2 (-1 - 2 x - x^2 - 2 x^3 + 4 x^4 + 4 x^5))/(1 - 2 x^2 - 2 x^3 - 4 x^4 + 8 x^6)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 03 2017 *)
-
PARI
Vec(2*(1+2*x+x^2+2*x^3-4*x^4-4*x^5)/(1-2*x^2-2*x^3-4*x^4+8*x^6)+O(x^40))
Formula
a(n) = 2*a(n-2)+2*a(n-3)+4*a(n-4)-8*a(n-6) for n>6.
G.f.: 2*x*(1 + 2*x + x^2 + 2*x^3 - 4*x^4 - 4*x^5)/(1 - 2*x^2 - 2*x^3 - 4*x^4 + 8*x^6).