cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286875 If n = Product (p_j^k_j) then a(n) = Sum (k_j >= 2, p_j^k_j).

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 8, 9, 0, 0, 4, 0, 0, 0, 16, 0, 9, 0, 4, 0, 0, 0, 8, 25, 0, 27, 4, 0, 0, 0, 32, 0, 0, 0, 13, 0, 0, 0, 8, 0, 0, 0, 4, 9, 0, 0, 16, 49, 25, 0, 4, 0, 27, 0, 8, 0, 0, 0, 4, 0, 0, 9, 64, 0, 0, 0, 4, 0, 0, 0, 17, 0, 0, 25, 4, 0, 0, 0, 16, 81, 0, 0, 4, 0, 0, 0, 8, 0, 9, 0, 4, 0, 0, 0, 32, 0, 49, 9, 29, 0, 0, 0, 8, 0, 0, 0, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 02 2017

Keywords

Comments

Sum of unitary, proper prime power divisors of n.

Examples

			a(360) = a(2^3*3^2*5) = 2^3 + 3^2 = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] && PrimePowerQ[#] && !PrimeQ[#] &], {n, 108}]
    f[p_, e_] := If[e == 1, 0, p^e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A286875(n) = { my(f=factor(n)); for (i=1, #f~, if(f[i, 2] < 2, f[i, 1] = 0)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Oct 07 2017
  • Python
    from sympy import primefactors, isprime, gcd, divisors
    def a(n): return sum(d for d in divisors(n) if gcd(d, n//d)==1 and len(primefactors(d))==1 and not isprime(d))
    print([a(n) for n in range(1, 109)]) # Indranil Ghosh, Aug 02 2017
    

Formula

a(n) = Sum_{d|n, d = p^k, p prime, k >= 2, gcd(d, n/d) = 1} d.
a(A246547(k)) = A246547(k).
a(A005117(k)) = 0.
Additive with a(p^e) = p^e if e >= 2, and 0 otherwise. - Amiram Eldar, Jul 24 2024