cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286887 Number of irredundant sets in the path graph P_n.

Original entry on oeis.org

2, 3, 5, 9, 15, 26, 44, 76, 130, 223, 382, 655, 1123, 1925, 3300, 5657, 9698, 16625, 28500, 48857, 83755, 143580, 246137, 421949, 723341, 1240013, 2125736, 3644118, 6247058, 10709240, 18358693, 31472038, 53952053, 92489213, 158552901, 271804912, 465951173
Offset: 1

Views

Author

Andrew Howroyd, Aug 02 2017

Keywords

Comments

Equivalently, the number of binary words of length n that don't start or end with 11 (the outside 1 is redundant) and don't contain 111, 1101 or 1011 (the middle 1 is redundant).

Examples

			Case n=5: irredundant words are {00000, 00001, 00010, 00100, 01000, 10000, 00110, 01100, 10001, 00101, 01010, 10100, 01001, 10010, 10101}, so a(5)=15.
		

Crossrefs

Row 1 of A286868 and A286870.

Programs

  • Mathematica
    RootSum[1 - #^2 - #^4 - #^5 + #^6 &, 3191 #^n + 4752 #^(1 + n) - 4234 #^(2 + n) + 11985 #^(3 + n) - 2369 #^(4 + n) + 3536 #^(5 + n) &]/89653 (* Eric W. Weisstein, Aug 04 2017 *)
    LinearRecurrence[{1, 1, 0, 1, 0, -1}, {2, 3, 5, 9, 15, 26}, 20] (* Eric W. Weisstein, Aug 04 2017 *)
    CoefficientList[Series[(2 + x + x^3 - x^4 - x^5)/(1 - x - x^2 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 04 2017 *)
  • PARI
    Vec((1 + x)*(2 - x + x^2 - x^4)/(1 - x - x^2 - x^4 + x^6) + O(x^40))

Formula

a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) for n > 6.
G.f.: x*(1 + x)*(2 - x + x^2 - x^4)/(1 - x - x^2 - x^4 + x^6).